T

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 528 . ~ March 31, 1981
CADR
- by
| Thomas F. Knight, Jr.
= David A. Moon

Jack Holloway
and Guy L. Steele, Jr.

Abstract:

The CADR machine, a revised version of the CONS machine, is a general-purpose, 32-bit
microprogrammable processor which is the basis of the Lisp-machine system, a new

- computer system being developed by the Laboratory as a high-performance, economical

_ implementation of Lisp. This paper describes the CADR processor and some of the

e associated hardware and low-level software,

_ This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the

— Department of Defense under Office of Naval Research contract N00O14-75-C-0643.

1 The CADR Micmp_rocessor

Overview

The CADR microprocessor is a general purpose processor designed for
convenient emulation of complex order codes, particularly those involving stacks and
pointer manipulation. It is the central processor in the LISP machine project, where it
interprets the bit-efficient 16-bit order code produced by the LISP machine compiler.
(The terms "LISP machine” and "CADR machine" are sometimes confused. In this
document, the CADR machine is a particular design of microprocessor, while the LISP
machine is the CADR machine plus the microcode which interprets the LISP machine
order code.)

The data paths of the CADR machine are 32 bits wide. Each 48-bit-wide
microcode instruction specifies two 32-bit data sources from a variety of internal
scratchpad registers; the two data-manipulation instructions can also specify a destination
address. The internal scratchpads include a 1K pointer-addressable RAM intended for
storing the top of the emulated stack, in a manner similar to a cache. Since in the LISP
machine a large percentage of main memory references will be to the stack, this
materially speeds up the machine. _

The CADR machine has a 14-bit microprogram counter, which behaves much
like that of a traditional processor, allowing up to 16K of writable microprogram memory.
Also included is a 32-location microcode subroutine return stack.

Memory is accessed through a two-level virtual paging system, which maps 24-bit
virtual addresses into 22-bit physical addresses,

There are four classes of micro-instructions. Each specifies two sources (A and
M); the ALU and BYTE operations also specify a destination (A, or M plus functional).
The A bus supplies data from the 1024-word A scratchpad memory, while the M bus
supplies data from either the 32-word M scratchpad memory (a copy of the first 32

locations of the A scratchpad) or a vnnety of other internal registers. The four classes of
microinstruction are:

ALU The destination receives the result of a boolean or arithmetic operation
performed on the two sources.

BYTE The destination receives the result of a byte extraction, byte deposit, or
selective field substitution from one source to the other. The byte so
manipulated can be of any non-zero width.

JUMP A transfer of control occurs, conditional on the value of any bit accessible to
the M bus, or on a variety of ALU and other internal conditions such as
pending interrupts and page faults.

DISPATCH A transfer of control occurs to a location determined by a word from the

dispatch memory selected by a byte of up to seven bits extracted from the M
bus.

There are several sources and destinations whose loading and use invoke special
action by the microprocessor. These include the memory address and memory data

2 The CADR Microprocessor

registers, whose use initiates main memory cycles.

Some of the ALU operations are conditional, depending upon the low order bnt
in the Q register and the sign of A source. These operations are used for multiply and
divide steps.

The main features of this machine which make it suitable for interpreting the
LISP machine order code are its dynamically writable microcode, its very flexible
dispatching and subroutining, its excellent byte manipulation abilities, and its internal
stack storage. While the design of CADR was strongly influenced by the requirements of
the LISP machine design, a conscious attempt was made to avoid features that are
extremely special-purpose. The goal is a machine that happens to be good at interpreting
the particular order code of the LISP machine, but which is general enough to interpret
others almost as well. In particular, no critical parts of the LISP machine design (such as
LISP machine instruction formats) are "wired in"; thus any changes to the LISP machine
design can be easily accomodated by CADR. However, there are several "efficiency
hacks" in the hardware, designed to speed up certain common operations of the LISP

machine microcode, which might not be useful for other microcodes. These are described
in later sections of this document.

Notational Conventions

All numbers used to describe bit positions, field widths, memory sizes, etc. are
decimal. Octal is used only (and exclusively) to describe the values of fields. Bits within
a word are consistently numbered from right to left, the least significant bit being bit
<0>. Fields are described by the numbers of their most and least significant bits (e.g.
"bits <22-10>").

: Whenever a particular field value is described as "illegal”, it does not mean that
specifying that value will screw up the operation of the machine. It merely indicates a
value which happens to have a certain function, not because it is considered directly
useful, but because the internal workings of the machine may force certain selectors to
that value for other reasons, and the user can select this value too even though it is not
normally useful. These illegal values are described for the benefit of someone who may
wish to fathom these inner workings.

A field value described as "unused” is reserved for possible design expansion and
should not be used in programs. Bit fields described as "unused” should be zero in
programs, for the sake of future compatibility.

3 The CADR Microprocessor

Since the use of the term "micro” in referring to registers and instructions
becomes redundant, its use will be dropped from here on in this part of the document.
All instructions discussed are microinstructions,

The following bits are treated the same in every instruction, They will not be repeated in
the individual instruction descriptions

IR<48> = Odd parity bit

IR<47> = Unused

IR<46> = Statistics (see the description of the Statistics Counter)
This can be used to count how many times specified areas
of the microcode are executed, to implement microcode
breakpoints, or to stop the machine at a certain "time®.

IR<45> = JLONG (1 means slow clock)

IR<44-43> = Opcode (0 ALU, 1 JUMP, 2 DISPATCH, 3 BYTE)

IR<42> = POPJ transfer. Causes a return from a micro subroutine,
after executing one additional instruction.

IRC11-10> = Miscellaneous Functions

Normal

Not used

Write dispatch memory, if opcode is DISPATCH.

Enable modification of the M-ROTATE field by the

location counter (LC). See the description of the

instruction-stream hardware.

. The CADR Microprocessor

Data Paths

The data paths of the machine consist of two source busses A and M, which
provide data to the ALU and byte extractor, and an output bus OB, which is selected
from the ALU (optionally shifted left or right) or the output of the byte extractor, and
whose data can be routed to various destinations. We first describe the specification of
the source busses, which are identically specified for all instructions; then the destination
specifiers which control where results are stored; and finally the two instructions for
controlling the ALU and the byte extractor.

<<picture CHODAM goes here - use DPLT>>

5 The CADR Microprocessor

Sources

All instructions specify sources in the same way. There are two source busses in
the machine, the A bus and the M bus. The A bus is driven only from the A scratchpad
memory of 1024 32-bit words. The M bus is driven from the M scratchpad of 32 32-bit
words and a variety of other sources, including main memory data and control registers,
the PC stack (for restoring the state of the processor after traps), the internal stack buffer
and its pointer registers, the macrocode location counter, and the Q register. Addresses
for the A and M scratchpads are taken directly from the instruction. The alternate
sources of data for the M source are specified with an additional bit in the M source field.

IR{41-32> = A source address
IR<31-26> = M source address
If IRC31> = 0,
IR<30-26> = M scratchpad address
If IRC31> =},
IR<30-26> = M "functional® source
0 Dispatch constant (see below)
SPC pointer <28-24>, SPC data <18-0>
PDL pointer <9-0>
PDL index <9-0>
PDL Buffer (addressed by Index)
OPC registers (see below) <13-0>
Q register
10 VMA register (memory address)
11 MAP[MD]
12 MD register (memory data)
13 - LC (location counter)
14 SPC pointer and data, pop
24 PDL buffer, addressed by Pointer, pop
25 PDL buffer, addressed by Pointer

- W N e

Functional sources not listed above should not be used and may have side effects. Sources
13, 16, and 17 are reserved for future expansion. Source 4 is the PDL buffer, indexed by
the PDL Index, and the PDL pointer is decremented, presumably a useless operation.

Programming hint: it is often convenient to reserve one A memory word and one M
memory word and fill them with constant zeros, to provide a zero source for each source
bus. It is also convenient to have an M memory word containing all ones. These are
particularly useful for byte extraction, masking, bit setting, and bit clearing operations.
The CONSLP assembler in fact assumes that A memory location 2 and M memory
location 2 are sources of zeros. The UCONS microcode stores all ones in location 3.

The M scratchpad normally contains a duplicate copy of the first 32 locations of the A
scratchpad. The effect is as if there were a single scratchpad memory, the first 32
locations of which were dual-ported. This makes programming more convenient, since

— [The CADR Microprocessor
- these locations are accessible to both sides of the ALU and shifter.
%

i

o
-

Destinations

7 The CADR Microprocessor

The 12-bit destination field in the BYTE and ALU instructions specifies where the result
of the instruction is deposited. It is in one of two forms, depending upon the high-order
bit. If the high-order bit is 1, then the low 10 bits are the address of an A memory
location, and the remaining bit is unused. If the high order bit is 0, the low 10 bits are
divided into a 5-bit "functional destination" field, and a 5-bit M scratchpad address, and
both of the places specified by these fields get written into. The next-to-highest bit in the

destination field is not used.

IR<25-14> = Destination
If IR<25> = 1,

IR{23-14> = A scratchpad write address

If IR<C25> = 0,

IR<23-19> = Functional destination write address

0
1
2

10
11
12
13
14
15
16

17

20
21
22
23

30
31
32
33

None
LC (Location Counter)
Interrupt Control <29-26>
Bit 26 = Sequence-Break request
Bit 27 = Interrupt-Enable
Bit 28 = Bus-Reset
Bit 29 = LC Byte-mode
PDL (addressed by Pointer)
PDL (addressed by Pointer), push
PDL (addressed by Index)
PDL Index
PDL Pointer
SPC data, push
Next instruction modifier
("OA register"), bits <25-0>
Next instruction modifier
("OA register®), bits <47-26>
VMA register (memory address)
VMA register, start main memory read
VMA register, start main memory write
VMA register, write map. The map is
addressed from MD and written from
VMA. VMAC(26>=]1 writes the level 1
" map from VMA<31-27>. VMAC25)=1 writes
the level 2 map from VMAC23-0>.
MD register (memory data)
MD register, start main memory read
MD register, start main memory write
MD register, write map like 23

IRC18-14> = M scratchpad write address

[The CADR Microprocessor

Functional destinations not listed may have strange results. Destinations 3-7 are reserved
for expansion. ‘

Note: If you write into the M-memory, the machine will also write into the
corresponding A-memory address. Therefore you should never write into A-memory
locations 0-37; this way the first 40 (octal) locations of A-memory "map into" the M-
memory.

The full details of the more complicated functional destinations are described in later
sections below. The Q register is loaded by using the Q-control field of the ALU
instruction, not by using a functional destination. In addition, it loads from the ALU
outputs, not the output bus, This means that the left and right shift operations are
ineffective for data being loaded into Q.

Programming hint: if a functional destination is specified, an M scratchpad location must
also be specified. It is convenient to reserve one location of the M scratchpad for
"garbage"; this location can be specified when it is desired to write into a functional
destination but not into any other M scratchpad location. Since the CONSLP assembler
defaults the M write address to zero, it is best to let location 0 be the garbage location.
Location 0 of the A scratchpad will also be written and is also reserved as a garbage
location,

’ The CADR Microprocessor

The ALU Instruction

The ALU operation performs most of the arithmetic in the machine. It specifies
two sources of 32 bit numbers, and an operation to be performed by the ALU. The
operation can be any of the 16 boolean functions on two variables, two's complement
addition or subtraction, left shift, and several less useful operations. The carry into the
ALU can be forced to be 0 or 1. The output of the ALU is optionally shifted one place,
and then written into the specified destinations via the output bus. Additionally, the
ALU instruction specifies one of four operations upon the Q register. These are do
nothing, shift left, shift right, and load from the ALU outputs. An additional bit in the
ALU operation field is decoded to indicate conditional operations; this is how the
"multiply step” and "divide step” operations are specified. (Multiplication and division are
explained in greater detail in another section.)

IR<44-43> = 0 (ALU opcode)
IR<41-32> = A source
IR<31-26> = M source
IR<25-14> = Destination
IRC13-12> = Output bus control
0 Byte extractor output (illegal)
1 ALU output
2 ALU output shifted right one, with the correct
sign shifted in, regardless of overflow.
3 ALU output shifted left one, shifting in Q<31>
from the right.
IR<9> = not used
IR<B-4> = ALU operation
If IR¢8> = 0,
IR(7=3> = ALU op code (see table)
If IRCBY = 1,
IR(7-3> = Conditional ALU op code
0 Multiply step
1 Divide step
5 Remainder correction
11 Initial divide step
IRC2> = Carry into low end of ALU
IRC1-0> = Q control
0 Do nothing
1 Shift Q left, shifting in the inverse
‘ of the sign of the ALU output (ALUC31)>)
2 Shift Q right, shifting in the low bit
of the ALU output (ALU<O>)
3 Load Q from ALU output

10 The CADR Microprocessor

ALU operation codes (from Table 1 of 74181 specifications). All arithmetic operations
are two's complement. Note that the bits are permuted in such a way as to make the
logical operations come out with the same opcodes as used by the Lisp BOOLE function.
Names in square brackets are the CONSLP mnemonics for the operations.

Boolean (IR<7>=1) Arithmetic (IR<7>=0)
IR<6-3> Carry in = 0 Carry in = 1
0 ZEROS [SETZ] -1 0
1 MAA [AND] (MAA)-1 MAA
2 MA-A [ANDCA] (Mr-A)-1 (MA-A)
3 M [SETM)] n-1 n
4 -MAA [ANDCM] Mv-A (Mv=A)+l
5 A [SETA] (Mv=A)+(MAA) (Mv=A)+(MAA)+]
6 Me
A [XOR] N-A-1 [M-A-1] N-A [SuB]
7 MVA [IOR] (Mv=A)+M (Mv=A)+Mel
10 -An=M [ANDCB] MvA (MvA)el
1 MsA [EQV] M+A [ADD] NeAel [M+A+l]
12 -A [SETCA] (MvA)+(MA-A) (MvA)+(MA-A)+1
13 Mv-A [ORCA] (MvA)+M (MvA)+hel
14 -M [SETCM] | ' N+l [M+1]
15 -MvA [ORCM] M+e(MAA) - Me(MAA)+l
16 -Mv-A [ORCB] Me(Mv-A) M+(Mv-A)+1

17 ONES [SETO] L] [MeM] MeNel [Nen+l]

1n The CADR Microprocessor

. The BYTE Instruction

The BYTE instruction specifies two sources and a destination in the same way as
the ALU instruction, but the operation performed is one of selective insertion of a byte
field from the M source into an equal length field of the word from the A source. The -
rotation of the M source is specified by the SR bit as either zero or equal to the contents
of the ROTATE field. The rotation of the mask used to select the bits replaced is
specified by the MR bit as either zero or equal to the contents of the ROTATE field.
The length of the mask field used for replacement is specified in the LENGTH MINUS 1
field. The four states of the SR and MR bits yield the following operations:

MR=0 SR=0 Not useful (This is a subset of other modes.)

MR=0 SR=1 LOAD BYTE PDP-10 LDB instruction (except the unmasked bits

are from the A source). A byte of arbitrary position from the M source is
right-justified in the output.

MR=1 SR=0 SELECTIVE DEPOSIT The masked field from the M source is used to
replace the same length and position byte in the word from the A source.

MR=1 SR=1 DEPOSIT BYTE PDP-10 DPB instruction. A right-justified byte

from the M source is used to replace a byte of arbitrary position in the word
from the A source.

The BYTE instruction automatically makes the output of the byte extractor available by
forcing the output bus select code to 0 (byte extractor output).

IR<44-43> = 3 (BYTE operation)

IR<41-32> = A source

IR(31-26> = M source

IR{25-14> = Destination

IR<13> = MR = Mask Rotate (see above)

IR<C12> = SR = Source Rotate (see above)

IR(9-5> = Length of byte minus 1 (0 means byte of length 1, etc.)
IR(4-0> = Rotation count (to the left) of mask and/or M source

The byte operation rotates the M source by 0 (if SR=0) or by the rotation count
(if SR=1), producing a result called R. It also uses the MR bit, the rotation count, and
the length minus 1 field to produce a selector mask (see description below). This mask is
all zeros except for a contiguous section of ones denoting the selected byte. This mask is
used to merge the A source with R, bit by bit, selecting a bit from A if the mask is 0 and
from R if the mask is 1. This result is then written into the specified destination(s).

[o L v

y,

Output of mask memories:

Right mask memory is indexed by 0 (MR=0) or by rotation count (MR=1).
Left mask memory is indexed by (the index into right mask memory) plus

(the length minus 1 field), mod 32.

LEFT MASK MEMORY contents

00000000000000000000000000000001
00000000000000000000000000000011
00000000000000000000000000000111
00000000000000000000000000001111
00000000000000000000000000011111
00000000000000000000000000111111
00000000000000000000000001111111
00000000000000000000000011211111
00000000000000000000000111111111
00000000000000000000001111111111
00000000000000000000011111111111
00000000000000000000111111111111
00000000000000000001111111111111
00000000000000000011111111111111
00000000000000000111111111111111
00000000000000001111111111111111
00000000000000011211111111111111
00000000000000111111111111111111
00000000000001111111111111111111
00000000000011111111111211111111
00000000000111111111111111111111
00000000001111111111111111111111
00000000011111111111111111111111
00000000111111111111111111111111
00000001111111111111111111111111
00000011111111111111111111111112
00000111111111111111111111111111
00001111111111111111111111111111
00011111111111111111111111111111
00111111111111111111111111111111
01111111111111211111111111111111
11111111111111111111111111111111

12

The CADR Microprocessor

RIGHT MASK MEMORY contents

11111111111111111111111111111111
11111111111111111111111111111110
11111111111111111111111111111100
11111111111111111111111111111000
11111111111111111111111111110000
11111111111111111111111111100000
11111111111111111111111111000000
11111111111111111111111110000000
11111111111111111111111100000000
11111111111111111111111000000000
11111111111111111111110000000000
11111111111111111111100000000000
11111111111111111111000000000000
11111111111111111110000000000000
11111111111111111100000000000000
11111111111111111060000000000000
11111111111111110000000000000000
11111111111111100000000000000000
11111111111111000000000000000000
11111111111110000000000000000000
11111111111100000000000000000000
11111111111000000000000000000000
11111111110000000000000000000000
11111111100000000000000000000000
11111111000000000000000000000000
11111110000000000000000000000000
11111100000000000000000000000000
11111000000000000000000000000000
11110000000000000000000000000000
11100000000000000000000000000000
11000000000000000000000000000000
10000000000000000000000000000000

After the two masks are selected, they are AND'ed together o get the final
mask. This mask is all zeros, except for a field of contiguous ones defining the byte.

13 The CADR Microprocessor

As an example, if MR=1, rotation count=5, and length minus 1=7, then the right
mask index is 5 and the left mask index is 14 (octal). This results in a final mask as
follows: -

Right mask § 11111111111111111111111111100000
Left mask 14 00000000000000000001111111111111
AND f.hen together = -----cccccccccccccccnea.. ceccnne

Final mask 00000000000000000001111111100000

The byte is 8 bits wide, 5 positions from the right,

Programming hint: if the byte is "too large” (i.e. its position and size specifications cause
it to hang over the left-hand edge of a word), then the masker does not truncate the byte
at the left-hand edge. Instead, it produces a zero mask, selecting no byte at all; thus, the
output of the byte operation equals the A source. The reason for this is that an overflow
occurs in calculating the index into the left mask memory, and so the final mask is zero.
For example, if MR=1, rotation count=20 (octal), and length minus 1=27 (octal), then the
right mask index is 20 and the left mask index is 47# (mod 32). This results in a final
mask as follows:

Right mask 20 11111111111111110000000000000000
Left mask 7 00000000000000000000000011111111
AND them together e et

Final mask 00000000000000000000000000000000

U] The CADR Microprocessor

Control

The control section of the processor consists of a 14-bit program counter (the
PC), a 32-location PC stack (SPC) and stack pointer (SPCPTR), and a 2K dispatch
memory, used during the DISPATCH instruction. Unlike some microprocessors, and like
most traditional machines, the normal mode of operation is 1o execute the next sequential
instruction by incrementing the PC.

The processor uses single instruction look ahead, i.e. the lookup of the next
instruction is overlapped with execution of the current one. This implies that after
branching instructions the processor normally executes the following instruction, even if
the branch was successful. Provision is made in these instructions to inhibit this execution
(with the N bit), but the cycle it would have used will then be wasted.

(IZ is a branch instruction to the location of I8)

TIME ===)>

	I			
fetch 11	fetch I2	fetch I3	fetch I8	fetch 19
execute I0	. execute I1	execute IZ	execute I3	execute I8

| | | |

Fetch of branch=--' | | |

| | |

Execution of branch----cccccccca. ' | |

| |

Execution (optionally inhibited) | |

of following instruction-===c--cccccccccca.. vees! |

' |

Execution pf instruction branched to ===ecccscccccccccccncnccan '

Two types of instruction affect flow of control in the machine. The conditional
JUMP specifies a new PC and transfer type in the instruction itself, while the DISPATCH
instruction looks up the new PC and transfer type in the 2K dispatch memory. In either
case, the new PC is loaded into the PC register, and the operation specified by the 3-bit
transfer type is performed. These operations are:

N bit If on, inhibits execution of the next instruction, i.e. the instruction at the
address one greater than that of the transfer instruction. (This instruction
needn't actually be at the address one greater, if a transfer of control was

15 The CADR Microprocessor

already in progress.) The cycle that would have executed that instruction is
wasted.

The P ahd R bits are decoded as follows:

P=0 R=0 BRANCH Normal program transfer.
P=1 R=0 CALL Save the correct return address on the SPC stack, and jump to
the new PC address.
P=0R=1 RETURN Ignore new PC; instead pop PC off the SPC stack.
P=1 R=1 FALL THROUGH In a DISPATCH instruction, do not dispatch.
I-MEM WRITE In a JUMP instruction, write into the instruction memory,
and do not jump.

The BRANCH transfer type is the normal program transfer, without saving a
return address.)

The CALL transfer type pushes the appropriate return address onto the SPC
stack. This stack is 32 locations long. It is the responsibility of the programmer to avoid
overflows. The return address is PC+2, or PC+1 if the N bit is also on. Actually, if the
N bit is on the address of the instruction NOP'ed is saved, which may not be identical to
PC+1 if a transfer of control is already in progress. If the N bit is not on, 1 + the address
of that instruction is saved. In the case of a dispatch, if the N bit is on and bit 25 of the
instruction is on, save PC, the address of the dispatch instruction itself; this allows the
dispatch to be re-executed upon return. (Actually, due to pipelining, when the above
paragraph says PC it doesn't really mean PC.)

The RETURN transfer type pops a return PC from the SPC stack, ignoring the
PC specified in the instruction or dispatch table.

The FALL THROUGH transfer type for dispatches allows some entries in a
dispatch table to specify that the dispatch should not occur after all. The following
instruction is executed (unless inhibited), followed by the one after that (unless the first
following one branches and inhibits it!).

The I-MEM WRITE transfer type is the mechanism for writing instructions into
the microprogram instruction memory, and is described in a later section. (The dispatch
memory, unlike the instruction memory, is not written into by setting the P and R bits

(after all, in a dispatch instruction these bits come from the dispatch memory!); instead,
the Miscellaneous Function field is used.)

An additional bit in every instruction, including ALU and BYTE instructions,
called the POPJ bit, allows specification of simultaneous execution of a RETURN transfer
type along with execution of any instruction. That is, it does the same thing as if this
instruction, in addition to whatever else it does, had executed a RETURN transfer type
jump without the N bit on. It is the responsibility of the programmer to avoid conflicts
in the use of this bit simultaneously with other types of transfers.

The POPJ bit should be used in a JUMP instruction only in conjunction with
the RETURN transfer type. This will cause a RETURN operation in either case, but
execution of the following instruction is conditional, controlled by the N bit and the
conditional JUMP instruction. The POPJ bit, when used in a DISPATCH instruction, is

16 The CADR Microprocessor

specially over-ruled by the JUMP and CALL transfer types. This allows you to RETURN
normally, but jump off to other code in exceptional cases, using the same dispatch table as
other dispatch instructions which do not want to return. The POPJ bit should not be

used in conjunction with writing of dispatch or instruction memory, nor with the SPC pop

and push functional source and destination. The machine doesn't bother to do anything
reasonable in these cases.

v The CADR Microprocessor

The DISPATCH Instruction

The dispatch instruction allows selection of any source available on the M bus
[see description of M bus sources in the Data Path section], and the dispatch on any sub-
field of up to 7 bits from the selected word. The selected subfield is ORed with the
"dispatch address" field of the instruction to produce an 11 bit address. This address is
used to look up a 14 bit PC and 3 bit transfer type in the dispatch memory. The SPC-

pointer-and-data-pop source will not operate reasonably in conjunction with the dispatch
instruction. -

IR<44-43> = 2 (DISPATCH operation)

IR<41-32> = Dispatch constant (also A source when writing D-MEM)

IR¢31-26> = M source

IR<25> = Alter return address pushed on SPC by the CALL transfer
type, if the N bit is set, to be the address of this
instruction rather than the next instruction.

IR<24> = Enable instruction-stream hardware (described later).

IR<23> = Unused

IR<22-12> = Address in dispatch memory

IR<9-8> = Control dispatching off the map, see below.

IR<7-5> = Length of byte (not minus 1!) from M source to dispatch on

IR<4-0> = Rotation count (to the left) of M source

The dispatch operation takes the specified M source word and rotates it to the
left as specified by the rotation count. All but the low K bits are masked out, where K is
the contents of the length field. The result is OR'ed with the dispatch address, and this is
used to address the 2K dispatch memory, which supplies the new PC and the R, P, and N
bits.

If bits 8 and 9 of IR are not zero, the bottom bit of the dispatch address comes
from the virtual memory map rather than the rotator and masker. The address inputs to
the map in this case come from MD. This is primarily useful for testing pointers just
fetched from main memory for validity with respect to the garbage collector's
conventions. IR<8> selects bit 14 of the second level map, and IR<9> selects bit 15.
Selecting both bits ORs them together. _

The dispatch constant field is loaded into the DISPATCH CONSTANT register
on every dispatch instruction. This register is accessible as an M source. The dispatch
constant field has nothing whatsoever to do with the operation of dispatching; it is merely
a convenient device for loading a completely random register while doing something else.
(Uses for this feature are discussed in a later section.)

Miscellaneous function 2 inhibits the normal action of the instruction and
instead loads the dispatch memory with the low order contents of the A memory
scratchpad location specified in the A source. Note that the A source address is the same
field as the dispatch constant field. The dispatch constant is loaded anyway, but this can
be ignored. The parity bit (bit 17) is also loaded, and it is the responsibility of the

18 The CADR Microprocessor

programmer to load correct (odd) parity into the memory. Normal addressing of the
dispatch memory is in effect, so it is advisable to have the length field contain 0 so that
the dispatch memory location to modify is uniquely specified by the dispatch address in
the instruction.

19 The CADR Microprocessor

The JUMP Instruction

The JUMP instruction allows conditional branching based on any bit of any M
source or on a variety of internal processor conditions, including ALU output, (While
DISPATCH could also be used to test single M source bits, the use of JUMP saves

dispatch memory.) The JUMP operation is also used, by means of a trick, to write into
the instruction memory.

IR<44-43> =] (JUMP operation)

IR<41-32> = A source

IR<31-26> = M source

IR<25~-12> = New PC

IR<O = R bit (1 means pop new PC off SPC stack)

IR<8> = P bit (1 means push return PC onto SPC stack)

IR<C7> = N bit (1 means inhibit next instruction if jump successful)
IR<6> s If 1, invert sense of jump condition

IR(5> = If 0, test bit of M source; if 1, test internal condition
IRC4-0> = If IR<5>=0, rotation count for M source.

If IR{5>=]1, condition number:
0 Low bit of shifter output (illegal)
M source < A source
M source s A source
M source = A source
Page fault
Page fault or interrupt pending

Page fault or interrupt pending or sequence break flag
Unconditionally true

bW N

Page faults, interrupts, and sequence breaks are documented in later sections.

The jump condition is determined as follows. If IR<5>=0, then the M source is
rotated left by the rotation count; the low-order bit of the result is then tested. Thus, to
test the sign bit, a rotation count of 1 should be used. The jump condition is true if the
low-order bit is 1. If IR<5>=1, then the specified internal condition is tested. In either
case, the sense of the jump condition is inverted if IR<6>=1. In particular, this allows
testing of all six arithmetic relations between the M and A sources. -

If the final jump condition, possibly after inversion, is true, then the new PC
field and the R, P, and N bits are used to determine the new contents of the PC. If the
condition is not true, execution continues with the next instruction, modulo the POPJ bit.

If both the R and P bits are set (WRITE), then A and M sources are
(conditionally!) written into the instruction memory. Bits <47-32> are taken from A
source bits <15-0>; bits <31-0> are taken from M source <31-0>. Notice that this is not
the same alignment of bits as is used for the "next instruction modify" functional
destinations (16 and 17). The reason for the odd location of WRITE in the instruction

20 The CADR Microprocessor

set is due to the way in which it operates, It causes the same operations as the CALL

" transfer type, resulting in the the old PC plus 1 or 2 being saved on the SPC stack and the
PC register being loaded with the address to be modified. Then, when the instruction
memory would normally be fetching the instruction to be executed from that location, a
write pulse is generated, causing the saved data from the A and M sources to be written
into the instruction memory. Meanwhile, the machine simulates a RETURN transfer
instruction, causing the SPC stack to be popped back into the PC and instruction
execution to proceed from where it left off. Note that this instruction requires use of a
word on the SPC stack and requires an extra cycle. It is highly recommended that the N
. bit also be on in the JUMP instruction, since the processor will be executing a RETURN
transfer type unconditionally during what should be the execution of the instruction
following the write. If, however, this does not conflict with other things that this
following instruction specifies, then the following instruction may be executed. Care is
required. '

2 The CADR Microprocessor

Program Modif lcgtlon

A novel technique is used for variabilizing fields in the program instruction.
Two of the "functional destinations" of the output bus are (conceptual) registers
(sometimes collectively referred to as the OA register), whose contents get OR'ed with the
next instruction executed. Combined with the shifter/masker ability to move any
contiguous set of bits into an arbitrary field, this feature provides, for example, variable
rotation cqunts and the ability to use program determined addresses of registers; for
example, it can be used to index into the A scratchpad memory.

Functional destination 16 (OA-REG-LOW), when written into, effectively OR's
bits <25-0> into bits <25-0> of the next instruction; functional destination 17 (OA-REG-
HIGH) effectively OR's bits <21-0> into bits <47-26> of the next instruction. The place
between bits <26> and <25> is a natural dividing line for all classes of instructions. Note
that only one half of a particular instruction can be modified, since it is impossible to
write into both functional destinations simultaneously.

When this feature is used, parity checking is disabled for the word fetched from
the instruction memory, since the OA "register” is OR'ed into the output of the memory
before parity is checked.

This feature is particularly useful for supplying the address of a location of
instruction memory or dispatch memory to be written into, for specifying variable
addresses in the A and M memories, and for operations on bytes of variable length or
position. Examples of these are detailed in a later section.

22 The CADR Microprocessor

Clocks

The CADR processor uses only one clock signal. This clock loads output data
into the designated registers, and a new PC and instruction are also loaded. The only
events which do not take place synchronous with the clock are the control signals for the
A, M, and PDL scratchpads and the SPC stack. For these devices, a two stage cycle is
performed. During the first phase, the source addresses of the respective devices are gated
into the address inputs. After the output data has settled, the outputs of these devices are
latched. Then, the address is changed to that specified as the write location from the
previous instruction. After the address has settled, a write pulse is generated for the
scratchpad memory to perform the write. Pass-around paths are provided (invisibly to the
programmer) for the A and M memories, which notice and correct read references to a
location which was written into on the previous cycle but has not yet actually been
written into the scratchpad. No such pass-around path is provided for the PDL memory,
because on any cycle in which the PDL memory is written into, the M scratchpad must
also be written into, and so the next instruction can refer to that M scratchpad location,
thereby using the M pass-around path. The SPC stack has a pass-around path when used
by the RETURN transfer type, but does not have a pass-around path when used as an M
source. The RETURN pass-around path makes it possible to have a subroutine only two
instructions long. It would take extra hardware to provide the missing pass-around paths,
and examination of actual microprograms showed that they would be very rarely used.

The clock cycle is of variable length. The duration of the first half of the cycle
(the "read phase™) is controlled by both the ILONG bit of the instruction (IR<45>) and
by two "speed” bits from the diagnostic interface. The duration of the second half (the

"write phase") is normally fixed. This clock serves as both the processor clock and a clock
for the bus interface, memory, and external devices.

The clock can be stopped at the end of either phase, for several reasons. Usually
the clock stops at the end of the read phase, referred to as "wait", This leaves the clock
in the inactive high state, and leaves the latches on the memories open. The clock can
wait because the machine was commanded to halt by the diagnostic interface, because a
single-step commanded by the diagnostic interface has completed, because of an error
such as a parity error, because of the statistics counter overflowing, or because of a
memory-wait condition. This latter condition happens if a main memory cycle is initiated
while a previous cycle is still in progress, or if the program calls for the result of a main
memory read before the bus controller has granted the bus access needed to perform that
read cycle. During a clock wait, the processor clock stops, but the clock to the rest of the
system (the bus interface and XBUS devices), continues to run, allowing them to operate.
When the processor finishes waiting the processor clock starts up in synchrony with the
external clock.

The clock can also stop at the end of the write phase, referred to as "hang".

This is used only during memory reads. If the processor calls for the result of a read
which is in progress but has not yet completed, it hangs until the data has arrived from
memory and sufficient time has passed for the data to flow through the data paths and
appear on the output bus. This is also sufficient time for the parity of the data to be
checked. In the case of a hang, both clocks stop, which allows them to restart
synchronously without any extra delay. In this way, the speed of the processor is adjusted

2 The CADR Microprocessor

to exactly match the speed of the memory.

0 The CADR Microprocessor

<<picture CHODTM goes here - use SCNV>>

<<picture CHODT1 goes here - use SCNV>>

25 The CADR Microprocessor

Accessing Memory

Access to main memory is accomplished through use of several functional
sources and destinations. These perform three functions; first, they allow access to two
registers, VMA (virtual memory address) and MD (memory data). Secondly, they can
initiate memory operations. Thirdly, they can wait for a memory operation to be
completed. Actually, this facility is not just for accessing main memory; it is used to
access any device on the Xbus or the Unibus, which includes not only memory but
peripheral equipment. For simplicity the term "memory” will be used, however.

There are eight functional destinations associated with the memory system.

Four of these load data into the VMA, the other four load data into the MD. Each group
of four consists of one with no other side effects, one which starts a read cycle, one
which starts a write cycle, and one which writes into the virtual address map.

In a memory read operation, data from memory is placed in the MD register
when it arrives, and can then be picked up by the program (using a functional source). In
a memory write operation, the program places the data to be written into the MD register
(by using a functional destination), whence it is passed to the memory.

The VMA register contains the virtual address of the location to be referenced.
This is 24 bits long; the high 8 bits of the register exist but are ignored by the hardware.
The VMA contains a "virtual” address; before being sent to the memory it is passed
through the "map”, which produces a 22 bit physical address, controls whether permission
for the read or write operation requested is allowed, and remembers 8 bits which the
software (microcode) can use for its own purposes.

Except when starting a memory cycle, the address to be mapped comes from bits
<23-0> of the MD register, rather than the VMA register. The reason for this is to
simplify the use of the map for checking what "space” a pointer being read from or
written into memory points at, a frequently-needed operation in the Lisp machine
garbage-collection algorithm,

The map consists of two scratchpad memories. The First Level Map contains
2048 3-bit locations, and is addressed by bits <23-13> of the VMA or MD. The Second
Level map contains 1024 24-bit locations, and is addressed by the concatenation of the
output from the First Level Map and bits <12-8> of the VMA or MD. The virtual address
space consists of 2048 blocks, each containing 32 pages. Each page contains 256 words
(of 32 bits, of course). Each block of virtual address space has a corresponding location in
the First Level Map. Locations in the Second Level Map are not permanently allocated
to particular addresses; instead, the First Level Map location for a block of virtual
addresses indicates where in the Second Level Map those addresses are currently described.
The Second Level Map contains sufficient space to describe 32 blocks, so at any given
time most blocks must be described as "no information available." This done by reserving
the last 32 locations in the Second Level Map for this purpose and filling them with "no
information available" page descriptors; most First Level Map locations will point here.

26 ~ The CADR Microprocessor

The output of the Second Level Map consists of:

MAP(23> e access permission

MAP(22> = write permission

MAP<21-14> = available to software. Note that bits 15 and 14 can
be tested by the DISPATCH instruction.

MAPC13-0> = physical page number

The physical address sent to memory is the concatenation of the physical page number
and bits 7-0 of the VMA.

The two maps can be read by putting an appropriate address in the MD, and
reading the functional source MEMORY-MAP-DATA (11):

MAP{31> = 1 if the most recent memory cycle was not performed because it
was an attempt to write without write permission, i.e. a 1 in
bit 22 of the second level map.

MAP<30> = 1 if the most recent memory cycle was not performed because there
was no access permission, i.e. a 1 in bit 23 of the second level map.
MAPC30> is 0 if no access fault exists, although a write fault may
exist. Note that bits <31-30> apply to the last attempted memory
cycle, and have nothing to do with the map locations addressed by
the contents of MD.

MAP<29> = 0 always.

MAP<28-24> = First Level Map

MAP<23-0> = Second Level Map

The maps can be written by using one of the functional destinations VMA-
WRITE-MAP (23), MEMORY-DATA-WRITE-MAP (33). The MD supplies the address
of the map location to be written, and the VMA supplies the data to be written, and tells
which level of the map is being written. One register must be set up in a previous
instruction, the other is written via the functional destination, and the actual writing into
the map happens on the following cycle. There is no pass-around path and no latch for
the map, so the following instruction must not use it.

The first level map is written from bits <31.27> of the VMA, if VMA<26> is a
1. (These are not the same bits as it reads into when using the MEMORY-MAP-DATA
functional source.) The second level map is written from VMA<23-0>, if VMA<25> is a
1. Note that when writing the second level map the first level map supplies part of the
address, and must have been written previously. Therefore it is not useful to write both at
the same time, although it is possible to set both bits to 1.

Main memory operations are initiated by using one of the functional destinations
VMA-START-READ (21), VMA-START-WRITE (22), and MEMORY-DATA-START-
WRITE (32). There is also MEMORY-DATA-START-READ (31), but it is probably
useless. In the case of a write, the VMA supplies the address and the MD supplies the
data, so one register must be set up in advance and the other is set up by the functional
destination that starts the operation. A main memory read can also be started by the

27 The CADR Microprocessor

macro instruction-stream hardware, described later.

The register named (VMA or MD) is loaded with the result of the instruction
(from the Output Bus) at the end of the cycle during which that instruction is executed.
During the following cycle, the map is read. The instruction executed during this cycle
should be a JUMP instruction which checks for a page fault condition. At the end of this
cycle, if no page fault occurs, the memory operation begins. The processor continues
executing while the memory operation happens, but if any operation which conflicts with
the memory being busy is attempted, the machine waits or hangs until the memory
operation has been completed. Such references include asking for the results of a read
cycle by using the MEMORY-DATA (12) functional source, using any functional
destination that refers to the VMA, MD, or MAP, or attempting to start a read cycle via
the instruction-stream hardware.

The presence or absence of a page fault is remembered until the next time a
memory cycle is started, so it is not strictly necessary to check for page fault immediately
after starting a cycle, but is good practice.

The MEMORY-DATA-START-WRITE destination is useful for doing the
second half of a read-followed-by-write operation, since the correct value is still in the
VMA. Note that it is still necessary to check for a page fault after starting the write,
since you may have read permission but not write permission.

There is a feature by which main memory parity errors can be trapped to the
microcode. A bit in the diagnostic interface controls whether or not this is enabled.
When the MEMORY-DATA functional source is used, and the last thing to be loaded
into the MD was data from memory which had even parity, a main memory parity error
has occurred. If trapping is enabled, the current instruction is NOPed and a CALL
transfer to location 0 is forced. The following instruction is also NOPed. The trap
routine must use the OPC registers to determine just where to return to if it plans to
return, since if a transfer operation was in progress the address pushed on the SPC stack
by the trap may have nothing to do with the address of the instruction which caused the
trap. This is also true of the error-handler for microcode-detected programming errors. If
a main memory parity error occurs, and trapping is not enabled, the machine halts if
error-halting is enabled, just as it does in response to a parity error in an internal memory.

When using semiconductor main memory, which has single-bit error correction, a
parity error trap indicates that an uncorrectable multiple-bit error occurred. Single-bit
errors are corrected automatically by the hardware, and cause an interrupt so that the

processor may, at its leisure, log the error and attempt to rewrite the contents of the bad
location.

2 The CADR Microprocessor

The Instruction-Stream Feature

The CADR processor contains a small amount of hardware to aid in the
interpretation of an instruction stream which comes in units smaller than the CADR word
size. For example, the Lisp-machine macrocompiled instruction set uses 16-bit units. The
hardware speeds up both fetching and decoding of instructions by relieving the microcode
of some routine bookkeeping.

Both 8-bit (byte) and 16-bit (halfword) instructions are supported, depending on
a mode bit (bit 29 of the "Interrupt Control” register, functional destination 2.) The
hardware decides when it is time to fetch a new main-memory word, containing the next
2 or 4 units of the instruction stream, and alters the flow of microprogram control. The
hardware provides a feature by which the rotator control can be made to select the
current unit of the instruction stream; this is used when dispatching on the instruction
being interpreted, and when extracting fields of the instruction via the BYTE
microinstruction.

There is a 26-bit register called the Location Counter (LC), which can be read
by functional source 13 and written by functional destination 1. It always contains the
address of the next instruction stream unit, in terms of 8-bit bytes. In halfword mode
LC<0> is forced to zero. The LC is capable of counting by 1 or 2 (depending on byte vs.
halfword mode) and has a special connection to the VMA; the VMA is loaded from the
LC, divided by 4, when an instruction-fetch occurs.

The high 6 bits of functional source 13 are not part of the LC per se, but
contain various associated status, as follows: _

31 Need Fetch. This is 1 if the next time the instruction stream is advanced, a
new word will be fetched from main memory. This is a function of the low
2 bits of LC, of byte mode, and of whether the LC has been written into
since an instruction word was last fetched from main memory.

30 not used, zero.

29 LC Byte Mode. 1 if the instruction stream is in 8-bit units, 0 if it is in 16-bit
units. This reflects bit 29 of the Interrupt Control register.

28 Bus Reset. This reflects bit 28 of the Interrupt Control register, which is set
to 1 to reset the bus interface, the Unibus, and the Xbus.

27 Interrupt Enable. 1 if external interrupt requests are allowed to contribute
to the JUMP condition. This reflects bit 27 of the Interrupt Control
register.

26 Sequence Break. 1 if a sequence break (macrocode interrupt signal) is
pending. This flag does nothing except contribute to the JUMP condition.
This reflects bit 26 of the Interrupt Control register.

Bit 14 of the SPC stack is used to flag the return address containing it as the
address of the main instruction-interpretation loop. The hardware recognizes a RETURN
transfer with SPC<14>=1 as completing the interpretation of one instruction and
initiating the interpretation of the next. The instruction stream will be advanced to its
next unit (byte or halfword) in the cycle following the RETURN transfer. (It is delayed
one cycle for obscure timing reasons.) This cycle is free to also execute a useful
microinstruction, provided it does not use the LC, VMA, MD, and associated hardware.

2 The CADR Microprocessor

Advancing the instruction stream increments the LC, by 1 or 2. If a new word
needs to be fetched from main memory, the unincremented LC, divided by 4, is
transferred to the VMA and a read cycle is started. A fetch can be required either
because the LC points at the first unit of a word or because the LC has been modified
since the last instruction stream advance (a branch occurred). It is legal for the
instruction which does the RETURN transfer to modify the LC, and a fetch will always
be required. If no fetch is required, the RETURN transfer is altered by forcing SPC<1>
to 1, skipping over two microinstructions which, in the fetch case, check for a page fault
(or interrupt or sequence break) and transfer the new instruction stream word from MD
into a scratchpad location.

The instruction stream can also be advanced by a DISPATCH instruction with
bit 24 set. In this case, no alteration of the SPC return address occurs. The dispatch
should check the NEEDFETCH signal, which is available as bit 31 of the LC functional
source, to determine whether a new word is going to be fetched. If a fetch occurs, the
DISPATCH should call a subroutine to check for page fault and transfer the new
instruction stream word from MD to a scratchpad location. If no fetch occurs, the
DISPATCH should drop through. The instruction after the DISPATCH may then
operate on the next unit of the instruction stream. This feature is provided to facilitate
the use of multi-unit instructions.

The remaining hardware associated with the instruction stream feature
implements miscellaneous function 3, which alters the M-rotate field to select the current
unit of the instruction stream from the current word, which should be supplied as the M-
source. This applies to any operation which uses the rotator: BYTE instructions,
DISPATCH instructions, and JUMP instructions which test a bit. The instruction should
be coded for the unit (byte or halfword) at the right-hand end of the word. In half-word
mode, IR<4> is XOR'ed with LC<1> to produce the high-order bit of the rotate count.
In byte mode, IR<4> is XOR'ed with (LC<1> XOR LC<0>), and IR<3> is XOR'ed with
LC<0>. The effect, since the LC always has the address of the next instruction, and the
bits are numbered from right to left, is as desired. In halfword mode, the low half of the
M source is accessed for the even instruction, when LC<1>=1, and the high half is
accessed for the odd instruction, when LC<1>=0,

30 The CADR Microprocessor

Multiplication, Division, and the Q register

The Q register is provided in CADR primarily for multiplication and division. It
is occasionally useful for other things because it is an extra place to put the results of an
ALU instruction, and because it can be used to collect the bits which are shifted out
when the OUTPUT-SELECTOR-RIGHTSHIFT-! operation is used in an ALU
instruction.

The Q register is controlled by two bits (IR<1.0>) in the ALU instruction. The

operations are do nothing, shift it left, shift it right, and load it from the output of the
" ALU. (It loads from the ALU rather than the Output Bus for electrical reasons.) When
the Q register shifts left, Q<0> receives -ALU<31>, the complement of the sign of the
ALU output. When the Q register shifts right, Q<31> receives ALU<0>, the low bit of
the ALU output. The Q register is also connected to the Output Bus shifter; when the
Output Bus is shifted left, OB<0> receives Q<31>, the sign of the Q. These
interconnections are dictated by the needs of multiplication and division.

Multiplication in CADR is a simple, 1 bit at a time, shift-and-add affair. The
hardware provides a conditional-ALU operation, MULTIPLY-STEP, which is ADD if
Q<0>=1, and SETM otherwise. This is used in combination with SHIFT-Q-RIGHT and
OUTPUT-SELECTOR-RIGHTSHIFT-1. Initially the multiplicand is placed in an A-
scratchpad location and the multiplier is placed in Q. 32 MULTIPLY-STEP operations

are executed; as Q shifts to the right each of the bits of the multiplier appear in Q<0>, If
- the bit is 1, the multiplicand gets added in. The results of each operation go into an M-
scratchpad location, which is fed back into the next step. The low bit of each result is
shifted into Q. Thus, when the 32 steps have been completed, the Q contains the low 32
bits of the product, and the M-scratchpad location contains the high 32 bits.

This algorithm needs a slight modification to deal with 2's complement numbers.
The sign bit of a 2's complement number has negative weight, so in the last step if
Q<0>=1, i.e. the multiplier is negative, a subtraction should be done instead of an
addition. The hardware does not provide this, so instead we do a subtraction after the last
step, which is adding and then subtracting twice as much, which has the effect of
subtracting. Note that this correction only affects the high 32 bits of the product, and
can be omitted if we are only looking for a single-precision result. Consider the following
code. (The CONSLP assembler format used is explained later in this document.)

; Multiply Subroutine. A-MPYR times Q-R, low product to Q-R, high to M-AC.

MPY ((M-AC) MULTIPLY-STEP M-ZERO A-MPYR) ;Partial result = 0 in first step
(REPEAT 30. ((M-AC) MULTIPLY-STEP M-AC A-MPYR)) iDo 30 steps ’
{POPJ-1F-BIT-CLEAR-XCT-NEXT sReturn after next 1f A-MPYR positive
- (BYTE-FIELD 1 0) Q-R)
((M-AC) MULTIPLY-STEP M-AC A-MPYR)) ;The final step

(POPJ-AFTER-NEXT
(M-AC) SUB M-AC A-MPYR) ;Correction for nsgative multiplier

n The CADR Microprocessor

{NO-OP) iJump delay

To multiply numbers of less than 32 bits is also possible. With the same initial
conditions, after n steps the high n bits of the Q contain the low n bits of the product,
and the remaining bits of the product are in the low bits of the M-scratchpad location.
Two BYTE instructions can be used to extract and combine these bits to produce a right-
adjusted product, if the numbers are unsigned.

Division is a little more complex than multiplication. It too goes a bit at a time,
using a non-restoring algorithm which either adds or subtracts at each stage. The basic
idea is to keep subtracting the divisor from the dividend, shifted over by different
amounts, as in long-division by hand. If the subtraction produces a positive result, it "goes
in" and a quotient bit of 1 is produced. If the subtraction produces a negative result, it
"fails to go in" and a quotient bit of 0 is produced. Instead of backing up and not doing
the subtraction, we set a flag that too much has been subtracted, and add instead the next
time. This works since the weight of the divisor on the next step is half as much, and B-
(A/2) = B-A+(A/2). The "flag” is simply the complement of the quotient bit produced,
except for the first step when the flag must be forced to OFF.

Division does not handle 2's complement numbers as easily as multiplication
does. The algorithm essentially requires all positive numbers, however the hardware
automatically takes the absolute value of the divisor by interchanging addition and
subtraction if the divisor is negative. It is up to the microcode to make the dividend
positive beforehand, and to determine the correct signs for the quotient and remainder
afterward. The sign of the quotient should be the XOR of the signs of dividend and
divisor. The sign of the remainder should be the same as the sign of the dividend.

Initially the positive dividend is in the Q register and the signed divisor is in an
A-scratchpad location. Appropriate conditional-ALU operations are used in conjunction
with the SHIFT-Q-LEFT and OUTPUT-SELECTOR-LEFTSHIFT-1 functions. An M-
scratchpad location receives the result of each step, and is fed back to the next step. This
location initially contains the high 32 bits of the double-length dividend, or O if the
dividend is single-precision. At each step, the OUTPUT-SELECTOR-LEFTSHIFT-1
operation brings the high bit of the Q into the low bit of the M-scratchpad, bringing up
another bit of the dividend. At each step, the complement of the sign of the ALU output
represents a bit of the quotient and is shifted into the low end of Q. After 33 steps, Q
contains the positive quotient (which is why it is called the Q-for-quotient register). The
reason why it takes 33 steps rather than 32 is a little difficult to explain. The quotient bit
produced by the first step, if 1, indicates "divide overflow", and is not really part of the
quotient. When using a single-precision dividend, "divide overflow™ can only happen if
the divisor is zero, since the initial operation is zero minus the absolute value of the
divisor, which is negative unless the divisor is zero.

What is left of the dividend after all the subtractions is the positive remainder.
The last step does not use OUTPUT-SELECTOR-LEFTSHIFT-1, so that the M-
scratchpad will receive the remainder rather than the remainder times 2. If the "too
much has been subtracted” flag is set, it is necessary to do one final addition to correct

32 The CADR Microprocessor

the remainder. This addition simply undoes the previous subtraction, not also doing a
new subtraction, because of the omission of the left shift.
The ALU operations for division are:
DIVIDE-STEP The conditional add or subtract described above, SHIFT-Q-
LEFT, and OUTPUT-SELECTOR-LEFTSHIFT-1. Q<0>=0 serves as
the "too much has been subtracted” flag.
DIVIDE-FIRST-STEP Identical to DIVIDE-STEP except that the "too much
has been subtracted” flag is forced to be off.
DIVIDE-LAST-STEP Identical to DIVIDE-STEP except that the QUTPUT-
SELECTOR-LEFTSHIFT-1 is omitted.
DIVIDE-REMAINDER-CORRECTION-STEP The conditional add or subtract
logic is used, except subtract is turned into SETM by invoking part of
the multiply logic. The exchanging of add and subtract if the divisor is
negative then applies, doing the right thing. No shifting occurs and Q
is unchanged.
Division of numbers smaller than 32 bits can be accomplished in less than 33
steps by sufficiently careful shifting of the inputs and outputs.
To illustrate how it all fits together, and show how to do the sign-correction,
here is the code for 32-bit division, with a double-precision dividend, in the CONSLP
format explained later in this document:

: Division Subroutine.
: M-AC and M-1 are the high and low words of the dividend, respectively.
: M-2 15 the diviser. The quotient i3 in M-AC, the remainder in M-1.

Dlv (JUMP-GREATER-OR-EQUAL M-AC A-ZERO DIV1) ;Check for negative dividend
(JUMP-NOT-EQUAL-XCT-NEXT M-1 A-ZERO DIVO) ;17 so, change sign
((M-1 Q-R) SUB M-ZERO A-1)
' ((M-AC) SUB M-AC (A-CONSTANT 1)) ;Borrow from high if low is zero
DIvo ((M-AC) SETCM M-AC) il's complement high dividend
(CALL DIV2) ;Now, call positive-dividend case
(POPJ-AFTER-NEXT (M-1) SUB M-ZERO A-l) iMake the remainder nepgative,
((M-AC) SUB M-ZERO A-AC) ;and change the sign of the quotient

; Divide routine for positive dividend.

DIV1 ((Q-r) ®-1) iLow dividend to Q-R

0Iv2 ((M-1) DIVIDE-FIRST-STEP M-AC A-2) ;First division step
(JUMP-1F-BIT-SET (BYTE-FIELD 1 0) Q-R DIVIDE-OVERFLOW) ;Error check

(REPEAT 31. ((M-1) DIVIDE-STEP M-1 A-2) ;Middle division steps
((M-1) DIVIDE-LAST-STEP M-1 A-2) ;Final step, quotient in Q-R
({M-1) DIVIDE-REMAINDER-CORRECTION-STEP M-1 A-2) ;M-1 gets remainder
((M-AC) Q-R)) ;Extract quotient from Q-R
(POPJ-AFTER-NEXT sReturn after next, but 4f

POPJ-GREATER-OR-EQUAL M-2 A-ZERD) : divisor 15 nagative,

] The CADR Microprocessor

((M-AC) SUB M-ZERO A-AC) ; change sign of guotient

7] The CADR Microprocessor

The Bus Interface

The Bus Interface connects the CADR machine to two busses, the Unibus and
the Xbus. The Unibus is a regular pdp11 bus, used to attach peripheral devices, especially
commercial devices designed for the PDP11 line. The Xbus is a 32-bit bus used to attach
memory and high-performance peripheral devices, such as disk. The bus interface also
includes the diagnostic interface, which allows a unibus operator, such as a pdp10, a
pdpl1, or another lisp machine, to control the operation of the machine, hardware to pass
interrupts from the Unibus and the Xbus to the processor, the logic which arbitrates the
Xbus, and the logic which arbitrates the Unibus in the absence of a pdp11 on that bus.

The Bus Interface allows the CADR machine to access memory on the Xbus and
devices on the Unibus, allows independent devices on the Xbus to access the Xbus (only),
and allows Unibus devices to access Xbus memory (through a map since the Unibus
address space is not big enough.) Buffering is provided when the Unibus accesses the
Xbus, to convert a 32-bit word into a pair of 16-bit words.

The CADR machine sees a 22-bit physical address space of 32-bit words. The
top 128K of this, locations 17400000-17777777, reference the Unibus. Each 32-bit word
has a 16-bit Unibus word in bits 0-15, and zero in bits 16-31. There is no provision for
using byte addressing on the Unibus, nor for read-pause-write cycles. The 128K
immediately below the Unibus, locations 17000000-17377777, are reserved for Xbus 1/0
devices. Locations 0-16777777 are for Xbus memory.

The bus interface includes a number of Unibus registers which control its various
functions:

Spy Feature

Unibus locations 766000-766036 are used for the Spy feature, which is described
in detail elsewhere. These locations read and write various internal signals in the CADR
machine, and provide the necessary hook for microcode loading and diagnostics.

Two-Machine Lashup

Two bus interfaces may be cabled together with a single 50-wire flat cable for
maintenance purposes. One machine, the debugger, is able to perform reads and writes on
the other machine's, the debuggee's, Unibus. Through registers on the Unibus (such as
the Spy feature), the debuggee may be diagnosed and exercised. By using the debuggee's
Unibus map (described below), the debuggee's Xbus can be exercised. The following
locations on the debugger's Unibus control this feature:

766100 Reads or writes the debuggee-Unibus location addressed by the registers below.

766114 (Write only) Contains bits 1-16 of the debuggee-Unibus address to be accessed.
Bit O of the address is always zero. _

766110 (Write only) Contains additional modifier bits, as follows. These bits are reset to
zero when the debuggee'’s Unibus is reset. .

3 The CADR Microprocessor

1 Bit 17 of the debuggee-Unibus address.

2 Resets the debuggee'’s Unibus and bus interface. Write a 1 here then
write a 0.

4 Timeout inhibit. This turns off the NXM timeout for all Xbus and
Unibus cycles done by the debuggee'’s bus interface (not just those
commanded by the debugger).

766104 (Read only) These contain the status for bus cycles executed on the debuggee's
busses. These bits are cleared by writing into location 766044 (Error Status) on

the debuggee’s Unibus. They are not cleared by power up. The bits are
documented below under "Error Status”,

Error Status

766044 Reading this location returns accumulated error status bits from previous bus
cycles. Writing this location ignores the data written and clears the status bits.
Note that these bits are not cleared by power up.

1 Xbus NXM Error. Set when an Xbus cycle times out for lack of
response.

2 Xbus Parity Error. Set when an Xbus read receives a word with bad
parity, and the Xbus ignore-parity line was not asserted. Parity Error is
also set by Xbus NXM Error.

4 CADR Address Parity Error. Set when an address received from the
processor has bad parity. Indicates trouble in the communication
between the processor and the bus interface.

10 Unibus NXM Error. Set when a Unibus cycle times out for lack of
response.

20 CADR Parity Error. Set when data received from the processor has bad
parity. Indicates trouble in the communication between the processor
and the bus interface.

40 Unibus Map Error. Set when an attempt to perform an Xbus cycle
through the Unibus map is refused because the map specifies invalid or
write-protected.

The remaining bits are random (not necessarily zero).

Interrupts

The bus interface allows the CADR machine to field interrupts on the Unibus, if
no pdpll is present. If a pdpll is present, its program can forward interrupts to the
CADR machine in a transparent way. The Xbus also can interrupt the CADR machine.
The following Unibus locations control interrupts and the Unibus arbitrator:

766040 Reading this location returns interrupt status, as follows:
1 Disable Interrupt Grant. If this is set, the Unibus arbitrator will not
grant BR4, BRS, BR6, and BR7 requests. It will continue to grant NPR

36 The CADR Microprocessor

requests. Powers up to zero.

2 Local Enable (read only). 1 means that the bus interface is arbitrating
the Unibus. O means that a pdpl1 is present on the bus and is doing the
arbitration.

1774 Bits 9-2 contain the vector address of the last Unibus interrupt accepted
by the bus interface or simulated by the pdp11 program.

2000 Enable Unibus Interrupts. A 1 here causes bit 15 (Unibus interrupt) to
be set when the bus interface accepts a Unibus interrupt. This bit is not
reset by power-up.

4000 Interrupt Stops Grants. A 1 here causes bit 0 (Disable Interrupt Grant)
to be set when the bus interface accepts a Unibus interrupt, thus
preventing further interrupts until the CADR machine has processed the
first interrupt. This bit is not reset by power-up.

30000 Bits 13-12 are the "interrupt level” for purposes of Unibus granting. The
mapping to normal pdpl11 levels is: 0->0, 1.>4, 2->5, 3->6. To simulate
level 7, turn on Disable Interrupt Grant. These bits are not reset by
power-up.

40000 Xbus Interrupt (read only). This bit is the interrupt-request line on the
Xbus.

100000 Unibus Interrupt. A 1 indicates that a Unibus interrupt has been
accepted by the bus interface or simulated by a pdp11 program, and is
awaiting processing by the CADR program. This bit clears on power-up.
Note that the interrupt-request signal to the CADR machine is the OR
of bits 14 and 135.

766040 Writing this location writes into bits 0 and 10-13 (mask 36001) of the above
register. This is used to change the "interrupt level" and to re-enable acceptance
of Unibus interrupts after processing an interrupt.

766042 Writing this location writes into bits 2-9 and 15 (mask 101774) of the above
register. This is used to simulate Unibus interrupts and to clear bit 15 (Unibus
Interrupt) after processing an interrupt.

Locations between 766040 and 766136 not mentioned above are duplicates of other
locations, and should not be used.

Unibus Map

Unibus locations 140000-177777 are divided into 16 pages which can be mapped
anywhere in Xbus physical address space. Each page is §12 16-bit words or 256 32-bit
words long, the same size as the pages of the CADR virtual memory. The first 8 pages
can be addressed by a pdpl1, while the second 8 are hidden under the pdpl1 I/0 space.
The Unibus map is intended to be used both as a diagnostic path to the Xbus and for
operating Unibus peripherals that access memory.

Each Xbus location occupies 4 Unibus byte addresses. It takes two 16-bit Unibus
cycles to read or write one 32-bit Xbus location. 16 buffers (one for each page) are
provided to hold the data between the two Unibus cycles. As long as each page is only in

37 The CADR Microprocessor

use by a single bus-master, the right thing will happen.

An additional feature is that writing an Xbus address of 17400000 or higher
through the Unibus map writes into CADR's MD register. This provides a 32-bit parallel
data path into the processor for diagnostic purposes. These Xbus addresses are otherwise
unusable, because they are used by the processor to address the Unibus.

Unibus locations 766140-766176 contain the 16 mapping registers. Note that
these power up to random contents, and should be cleared by an initialization routine.
The bit layout is:

100000 Bit 135 is the map-valid bit. If this is 0, this mapping register is not set up,
and will not respond to the Unibus; NXM timeout will occur and an Error
Status bit will be set. :

40000 Bit 14 is the write-permit bit. If this is O, this mapping register will not
respond to Unibus writes; NXM timeout will occur and an Error Status bit
will be set. :

37777 Bits 13-0 contain the Xbus page number. These bits are concatenated with
bits 9-2 of the Unibus address to produce the mapped Xbus address.

3 The CADR Microprocessor

The Xbus

The Xbus is the standard 32 bit wide data bus for the CADR processor. Main
memory and high speed peripherals such as the disk control and TV display are interfaced
to the Xbus. Control of the Xbus is similar to the Unibus, in that transfers are positively
timed and (as far as the devices are concerned) asynchronous. The bus is terminated at
both ends with resistive pullups of 390 ohms to ground and 180 ohms to +5 volts, for an
effective 123 ohm termination to +3.42 volts. At ground, each termination draws 28 ma.
for a total load of 56 ma. The bus is open collector, and may be driven with any device
capable of handling the 56 ma. load. The recommended driver is the AMD 26510, which
also provides bus receivers.

A typical read cycle begins with placing the address for the transfer on the -
XADDR lines and the parity of the address on the -XBUS.ADDRPAR line, The -
XBUS.RQ line is then lowered, initiating the request. The responding device places the

- requested data on the 32 -XBUS lines and the parity of the data on the -XBUS.PAR line.
Should it not be convenient for the device to produce parity (as in the case of 170
registers), the device may assert -XBUS.IGNPAR to notify the bus master that the
transfer should not be checked for correct parity. The responding device then asserts -
XBUS.ACK, which remains asserted until the -XBUS.RQ signal is removed by the master.

Write requests proceed identically, except that the master asserts -XBUS.WR and
the data to be written on the -XBUS lines along with the address lines. All bus masters
are required to produce good parity data on writes.

Deskewing delays are the responsibility of the bus master. In particular, it is the
responsibility of the bus master to assert good address, write, and data lines 80 ns. prior to
asserting -XBUS.RQ, and these lines must be held until the -XBUS.ACK signal drops in
response to the master dropping -XBUS.RQ. Responding devices are allowed to assert -
XBUS.ACK at the same time they drive read data onto the -XBUS lines. Thus, masters
should delay 50 ns. after receiving -XBUS.ACK before dropping -XBUS.RQ and strobing
the data. Responding devices are required to drop -XBUS.ACK immediately after -
XBUS.RQ is no longer asserted.

Normal bus master arbitration between the CADR processor and the Unibus
requests is handled by the bus interface. Devices on the Xbus which must become bus
master, such as the disk control, do so by asserting the -XBUS.EXTRQ signal. When the
bus becomes free, the bus interface responds by asserting -XBUS.EXTGRANT. This
signal is daisy chained between bus master devices on the Xbus, coming in on the -
XBUS.EXTGRANT.IN pin and leaving on the -XBUS.EXTGRANT.OUT pin. Within
each device, the decision is made whether or not to pass the grant onto the next device.
Unlike the Unibus structure, the decision on whether to pass grant and the act of
becoming bus master happen synchronously with a master clock signal distributed on the -
XBUS.SYNC line.

When a device initiates a request, it immediately asserts -XBUS.EXTRQ. At the
falling edge of -XBUS.SYNC it clocks the request signal into a D flip flop which we will
call REQ.SYNC. When -XBUS.EXTGRANT.IN goes low, the device asserts -
XBUS.EXTGRANT.OUT unless it has either the REQ.SYNC flip flop set, or is already
the bus master. At the next falling edge of -XBUS.SYNC the device which has both -
XBUS.EXTGRANT.IN and REQ.SYNC set becomes bus master. The device should

3 The CADR Microprocessor

>

immediately assert -XBUS.BUSY and may immediately begin asserting address lines for a
transfer. -XBUS.BUSY may be dropped asynchronously, after the slave device drops -
XBUS.ACK in response to the master's request.

The -XBUS. EXTGRANT.IN signal must be terminated with a resistive pullup of
180 ohms to +J volts within each device which does not simply connect it to -

XBUS.EXTGRANT.OUT.

XBUS Signal review:
Data lines:

-XBUS<31:0>
-XBUS.PAR

-XBUS.IGNPAR

Address lines:

-XADDR<21:0>
-XADDR.PAR

Cycle control lines:

-XBUS.RQ

-XBUS.ACK

-XBUS.WR

Mastership control lines:

-XBUS.BUSY

-XBUS.EXTRQ

32 data lines, low when data is a one.
Parity of the 32 data lines. Required for writes.

Ignore parity signal, may be asserted by any device for
a read.

22 address lines, low for address bit a one.
Odd parity for the address.

Asserted by the master to request a read or write
Minimum of 80 ns following stable -XADDR, -XBUS.WRITE,
and -XBUS data. “

Asserted by the slave in response to -XBUS.RQ No
delay necessary following assertion of good read data.

Asserted by the master during a write cycle.

Asserted when a device other than the bus interface is

. bus master. Only the bus interface examines this line.

Asserted on a -XBUS.SYNC clock edge, dropped
asynchronously after -XBUS.ACK drops.

Asserted when a device other than the bus interface
wishes to become bus master. Asserted asynchronously, may
be removed asynchronously after the device becomes master,
but before dropping -XBUS.BUSY.

-XBUS.EXTGRANT.IN The daisy-chained mastership grant signal. Must be

pulled up to +5V with a 180 ohm resistor. -
XBUS.EXTGRANT.OUT Asserted initially by the bus
interface, synchronously with the -XBUS.SYNC edge. The
signal may be subject to synchronizer lossage, since it is a
clocked version of -XBUS.EXTRQ which is not synchronous

Miscellaneous:
-XBUS.INIT

-XBUS.SYNC

-XBUS.INTR

XBUS.POWER.OK

40 The CADR Microproces#or

with -XBUS.SYNC

When low, resets all devices. This is low during power
on and off, and when the machine is reset.

Synchronization clock for mastership passing and other
desired purposes. Devices become bus master synchronous
with the edge of this signal. The request will normally follow
the edge by 80 ns.

Driving this low requests an interrupt. All devices are
required to initialize to a non-interrupt enable condition, and
are required to have interrupt enable and disable bits which
can selectively enable interrupts from that device. The
"requesting interrupt” state must be readable in one of the
device control register bits.

This line is HIGH when power is stable. It
remains low for 3 seconds after power comes on, and goes low
3 seconds before power is turned off.

4 The CADR Microprocessor

Error Checking

All internal memories in the CADR machine have parity checking. If bad parity
is detected, the machine is halted, if that is enabled. The processor always completes the
current instruction, and clocks the next one into the IR, before halting. This is done to
simplify the timing and to ensure that it halts with the scratchpad memory latches open.
It means that the data with bad parity will no longer be on the busses once the machine
stops. Furthermore, one incorrect instruction will have been executed. The OPC registers
can be helpful in reconstructing what must have happened.

Upon initial power-on, error halting is disabled, but it is expected that as soon as
the bootstrap program has initialized all internal memories it will enable error halting.

Main memory parity is checked and can either halt the machine, cause a
microcode trap, or be ignored, depending on mode flags in the diagnostic interface.

The data paths do not have any redundant checking. When the machine is

bootstrapped it runs some simple diagnostics designed to detect solid failures in the
memories and data paths.

'} The CADR Microprocessor

Self Bootstrapping

When the machine is powered on it resets itself and the Unibus but does not
automatically start up. A bootstrap sequence can be initiated in any of several ways. The
diagnostic interface can command one. The diagnostic display panel, by grounding one
wire, can start one. This is intended to be connected to a push button. The bus interface
can start a bootstrap by grounding one wire. The chaos network interface, if it receives a
certain sequence of messages from the network, will "push the boot button." The I/0
board recognizes a special set of keyboard commands (left and right control-meta) as a
boot signal. The character typed along with the left-right control-meta is available to the
bootstrap for selection of software options.

The bootstrap sequence starts by resetting the machine, which will halt it if it is
running. It turns on RUN, which will not do anything yet since the clock is stopped. It
sets the machine to its slowest speed, disables parity traps, error halts, and the statistics
counter, and enables the PROM (read-only) control memory. The trailing edge of the
boot signal allows the clock to start, causing a trap to microcode location 0, just like the
memory parity error trap. Location 0 of the PROM receives control. It must clear all
internal memories (filling them with good parity), reset the Unibus (before first using it),
enable error halts, set the machine speed to its normal value, run some diagnostic checks
to be sure the machine is working to some extent, load the microcode from the disk, load
the initial contents of main memory from the disk, and transfer control to the normal
microcode at its start address by going over the Unibus and manipulating the diagnostic
interface. :

If the diagnostic self-test fails, the microcode goes into a loop, and the value of

the PC can be read from the diagnostic display to determine what the problem seemed to
be.

. The CADR Microprocessor

Interrupts and Sequence Breaks

Interrupts are hardware signals to the microcode - typically the microcode
transfers data in or out of a buffer in main memory. When the signal requires the
attention of full Lisp code, a sequence break is triggered. This consists of setting a
sequence-break pending flag in A-memory, and, if a defer-sequence-break flag (also in A-
memory) is not set, setting the hardware sequence-break flag. This flag is tested at
various convenient points such as macroinstruction fetch, and causes the microcode to
turn off the flag and enter the sequence-break routines. The sequence-break flag is tested
by the same jump instruction that tests for page faults and interrupts.

Interrupts can be generated by both the Xbus and the Unibus. The exact
protocol is documented in the section on the bus interface.

Sequence-breaks are software signals indicating the need to run the scheduler (a
Lisp program). A sequence-break suggests that the condition for which some process is
waiting may have become true. The scheduler checks all processes for runnability, and

* also checks if it is time to perform periodic actions which are not full processes. Lisp

programs can defer sequence-breaks to protect critical areas, while still allowing interrupts
so that real-time response at the lowest level is preserved.

Access to virtual memory in the Lisp Machine software environment is viewed as
a primitive operation. Regardless of the actual location of a memory datum, the fetch of
that item is continued. This view considerably simplifies coding of the system, but
imposes moderately high potential latencies in responding to sequence breaks. Interrupts

are handled entirely at the microcode level, and the response time for these will be quite
short, '

The interrupt-control register, writable by functional destination 2, and readable
in the high bits of LC (functional source 13), contains three bits relevant to interrupts.
Bit <27>, INTERRUPT ENABLE, allows the external interrupt signal from the bus
interface to be seen by the JUMP instruction. Bit <26>, SEQUENCE-BREAK, is the

- sequence-break flag which is testable by the JUMP instruction.

Bit <28>, BUS-RESET, generates a RESET signal on the Unibus (BUS INIT L)
and on the Xbus (XBUS.INIT L), and resets the bus interface, when it is written 1 and
then 0. The machine also resets the busses when it is powered up.

Bit <29> is used by the Instruction-Stream feature.

“ The CADR Microprocessor

The Statistics Counter

The statistics counter is a 32-bit counter, which increments whenever an
instruction with bit 46 = 1 is executed. When the counter overflows from -1 to O the
machine stops, after completing execution of the instruction which caused the overflow.
(The stopping is under control of an enable bit in the diagnostic interface.) Bit 46 is
always 0 in instructions from the PROM.

The statistics counter can be read and written using the diagnostic interface. It
provides several facilities.

It can be used for metering, to measure how many instructions are executed,
possibly restricted to a certain subset of the microprogram. The microcode debugger and
console program has commands to set and clear the statistics bits in areas of control
memory.

It can be used for breakpointing, by setting the counter to -1 and turning on the
statistics bit in those instructions which have breakpoints set on them.

It can be used to find obscure bugs, by setting the statistics bit in all locations of
control memory, and setting the appropriate number in the statistics counter to cause the
machine to halt just before the point where the error appears, so that it can be single-
stepped through the suspect microcode.

The statistics counter is loaded from the Instruction Write Register, rather 1han
the normal diagnostic bus, because of its 32-bit width. Effectively it loads from the M bus

with a l-cycle delay. It is probably not possible for the machine to use the statistics
counter on itself, although clever ways might be found.

. . The CADR Microprocessor

_ The Diagnostic Interface

The diagnostic interface occupies 16 Unibus addresses. It includes a 16-bit
o~ diagnostic bus which can be used to read and write various portions of the machine.
There are 16 readable locations, and 8 writable locations. A readable location and a
writable location at the same address have no relation to each other. The diagnostic bus
is used by debugging and maintenance programs, including the "console” program, and in
a few cases by the machine itself during bootstrapping.
~_ First we will describe the readable locations. These are sometimes called the

"spy feature." Naturally, most of these are somewhat meaningless if read while the
machine is running.

766000 IR<15-0>. The low 16 bits of the currently-executing instruction.
a ~ 766002 IR<31-16>. The middle 16 bits of the currently-executing instruction.

766004 IR<47-32>. The high 16 bits of the currently-executing instruction.

- 766006 not used

766010 OPC. The OPCs are described below.

| - 766012 PC. The current program counter, which is the address of the next instruction to
g be executed.
Ha 766014 OB<15-0>. The low half of the output bus.

766016 OB<31-16>. The high half of the output bus.

766020 Flag Register 1. This provides various signals associated with starting and
| - stopping the machine. When the machine stops due to a hardware error, this
u register tells what happened. The bits are:
<15> = -WAIT. 1 if the machine is running or runnable, 0 if it is waiting

. %3 for memory., See the discussion of Clocks for the exact meaning of
K. WAIT.
P <14> = .VIPE. Normally 1, 0 if the level-2 map had a parity error at the
r last clock.
|) <13> = -VOPE. Normally 1, 0 if the level-1 map had a parity error at the
- last clock.

<12> = HIGHOK. 1 if the high runs in the machine are all valid, O if

some are not. This is essentially a power-supply check, and a
check for broken wires.

i, - <11> = -STATHALT. Normally 1, 0 if the machine has been stopped by
the statistics counter.

<10> = ERR. 1 if an error condition is present If ERRSTOP is on in the
mode register, the machine is stopped. “E

5

e

“* The CADR Microprocessor

<9> = SSDONE. 1 if a single-step operation has been completed.

<8> = SRUN. 1 if the machine is trying to run (but it may be stopped by
a parity error, by a wait condition, or by the statistics counter).

<7> = -HIGHERR. 1 if there was HIGHOK at the last clock.

<6> = -MEMPE. Normally 1, 0 if there was a main memory parity error
that was not caught by a trap at the last clock.

<35> = -IPE. Normally 1, 0 if there was a control memory parity error at
the last clock.

<4> = -DPE. Normally 1, 0 if there was a dispatch memory parity error
at the last clock.

<3> = -SPE. Normally 1, 0 if there was an SPC stack parity error at the
last clock. .

<2> = .PDLPE. Normally 1, O if there was a PDL-buffer parity error at
the last clock.

<1>=-MPE. Normally 1, 0 if there was an M-scratchpad parity error at
the last clock.

<0> = -APE. Normally 1, 0 if there was an A-scratchpad parity error at
the last clock.

766022 Flag Register 2. This register contains flags associated with pipelining and some
miscellaneous control signals which the debugging program likes to see. The bits

are:

<15> = unused
<14> = unused
<13> = WMAPD. The previous cycle said to write the map, and this cycle
will.
<12> = DESTSPCD. The previous cycle wrote into the SPC stack by using
a functional destination (as opposed to a CALL transfer).
<11> = IWRITED. The previous cycle did an -'MEM WRITE type of
JUMP instruction, and this cycle will write control memory, do a
RETURN transfer, and NOP the following cycle.
<10> = IMODD. The previous cycle used the "OA register” to modify this
cycle's instruction, or this cycle's instruction came from the
DEBUG-IR (see below). This flag inhibits parity checking of the
IR.
<9> = PDLWRITED. The previous cycle caused a write into the PDL-
buffer, and this cycle will do it.
<8> = SPUSHD. The previous cycle caused a write into the SPC stack,
and this cycle will do it.
<7> = unused
<6> = unused.
<35> = IR<48>. This is the parity bit of the IR.
<4> = NOP. The instruction currently in the IR is not really being
executed; this cycle is a NOP cycle.
<3> =.VMAOK. The last attempt to start a main memory cycle was not
successful because the map indicated a page fault.

766024

766026

766030

766032
766034

766036

766000
766002

766004

766006

Y] ' The CADR Micropracessor

<2> = JCOND. 1 if the jump-condition is satisfied. Meaningless if the
instruction in IR is not a JUMP instruction.
<10> = PCS1-0. These 2 bits select the next PC (the address of the
instruction after next.) The encoded values are:
0 = SPC<13-0> the SPC stack.
1 = IR<25-12> the address specified by a JUMP instruction.
2 = DPC<13-0> the dispatch memory.
3 = IPC<13-0> the PC+1.

M<15-0>. The low half of the M-source selected by the instruction currently in
IR.

M<31-16>. The high half of the M-source.

A<15-0>. The low half of the A-source selected by the instruction currently in
IR.

A<31-16>. The high half of the A-source.
ST<15-0>. The low half of the statistics counter.

ST<31-16>. The high half of the statistics counter.

Here is a description of the writable registers of the diagnostic interface.

DEBUG-IR<15-0>. The low 16 bits of an instruction supplied by the diagnostic
interface.

DEBUG-IR<31-16>. The middle 16 bits.
DEBUG-IR<47-32>. The high 16 bits.

Clock control register. Resetting the machine sets this to zero. The following
bits exist:
<4> = LDSTAT. Setting this to 1, then clocking the machine, causes the
statistics counter to load from IWR<31-0>, which loaded from the M
~ bus on the previous clock.
<3> = IDEBUG. Setting this to 1 causes the IR to load from the DEBUG-IR
instead of the PROM or the control memory, when the machine is
clocked. The primary way that the machine can be manipulated
through the diagnostic interface is by executing instructions using this
mechanism, '
<2> = NOPI11. Setting this to 1 forces NOP. This allows you to clock the
machine, for instance to transfer DEBUG-IR into IR, without the
present contents of the IR causing unwanted side-effects by getting

@ The CADR Microprocessor

executed as an instruction. NOP11 does not prevent the PC from
getting changed (in fact it will be incremented), and it does not prevent
previously-scheduled pipelined writes from happening.

<1> = STEP. Setting this to 1, when SSDONE is 0, causes the processor clock
to run for one cycle, and then set SSDONE. Setting STEP to O clears
SSDONE. (Both of these operations really take several cycles of the
clock to complete.) STEP is the way that the diagnostic interface
"clocks” the machine. Note that the main clock is running all the time,
even when the machine is stopped. STEP generates a single processor
clock, in synchronism with the main clock.

<0> = RUN. Setting this to 1 causes the machine to start running. You first
use STEP to set up the state of all the registers and memories, the PC,

and the IR, then turn on RUN. The first instruction executed is the
one you left in the IR.

766010 OPC control register. Resetting the machine sets this to zero. This register
. contains some bits which need to be used by the console program in order to
completely restore the state of the machine from a saved state. The bits are:
<2> = OPCINH. Setting this to 1 inhibits the OPCs from being clocked by
the processor clock. This bit must not be changed except when the
clock is high (i.e. the machine is stopped). The process of restoring the
OPCs consists of setting OPCINH, then getting the 8 values into the PC
by executing JUMP instructions, and transferring those values into the
OPCs via the OPCCLK bit. Once the OPCs have been restored,
OPCINH remains set so that they will be undisturbed while the rest of
the machine state is restored. Just before starting the machine, set
OPCINH to 0.
<1> = OPCCLK. Setting this to 1 and then to O generates a clock to just the.
OPCs. This is used to read out the 8 OPC registers without disturbing
the state of the rest of the machine.
<0> = LPC.HOLD. Setting this to 1 prevents the LPC register from loading
from the PC register when the machine is clocked. This is used in
restoring the LPC. The LPC is a duplicate copy of the first OPC
register, used by the IR<25> feature of the DISPATCH instruction.

766012 Mode register. Resetting the machine sets this to zero. This register enables
various features and controls the speed of the clock. The bits are:

<7> = PROG.BOOT. Setting this to 1 starts a bootstrap sequence.

<6> = PROG.RESET. Setting this to 1 resets the machine. Reset stops the
machine by clearing RUN, forces the clock to stop until the RESET
operation is over, clears the pipeline flags which cause things to happen
in the next instruction, and clears the Clock, Mode, and OPC registers
of the diagnostic interface.

<35> = PROMDISABLE. A 1 here disables the PROM. A 0 here replaces the
first 1K locations of control memory with the PROM.

<4> = TRAPENB. A 1 here enables main memory parity errors to cause

- 4 The CADR Microprocessor

microcode traps to location 0. A 0 here causes main memory parity
errors 1o be treated the same as other parity errors.
<3> =STATHENB. A 1 here enables overflow of the statistics counter to
B halt the machine.
<2> = ERRSTOP. A 1 here enables hardware errors (HIGHERR and various
_ : ~ parity errors) 10 halt the machine. A 0 causes it to continue blithely
on.
<1-0> = SPEED<1-0>. These bits control the speed of the clock. The
ILONG bit in the microinstruction also affects the speed, slowing it -
down by 40 nanoseconds. The speed codes are:
0 = Extra Slow

1 = Slow 155
2 = Normal
_ 3 = Fast

766014 not used.

~ 766016 not used.

The OPCs are a set of 8 registers which remember the last 8 values of the PC.
This provides a useful history for debugging. It is also used by the microcode itself in
. certain trap-handling routines. You can only read the last of the 8 OPCs, which is what
the PC was 8 clocks ago. Special control is provided over the clocking of the OPCs so
_ that they can be read out without di so that they can be saved and restored by the
~ microcode debugger. This is described above under 766010.

The OPCs can be read both by the diagnostic interface and as a functional
— source, for maximum flexibility. -

The bus interface provides a special path by which the MD register may be
loaded. This provides a parallel source of diagnostic input data, After loading MD,

instructions can be executed via the DEBUG-IR to transfer the data 1o the desired
~ ' destination.

There are several maintenance indicators (light-emitting diodes) scattered around
_ the machine. Inside the front door, near the lower-left-hand corner, are 5 octal displays.
- These show the current value of the PC. The decimal points on these displays show
various interesting conditions. From ieft to right:

1 - PROMENABLE. Indicates that the current instruction is coming from the PROM
rather than the writable control memory. '

2 - IPE. Indicates that control memory had a parity error at the last clock.

3 - DPE. Indicates that dispatch memory had a parity error at the last clock.

50 The CADR Microprocessor

4 - TILTO. Indicates that the map or main memory had a parity error at the last clock.

5 - TILTI. Indicates that the A-scratchpad, the M-scratchpad, the PDL-buffer, or the
SPC stack had a parity error at the last clock.

There is also provision for indicators for the various error conditions, "the
machine is really running," and the status of the disk interface. The location of this
indicator panel, and whether or not all machines will have one, is not yet determined.

| | " The CADR Microprocessor

1

The Disk Controller =) f% ;\\
N
The Lisp machine disk controller attaches &ot:n ! to 8 disk units of the "Trident"
family to the CADR machine's XBUS. The 1-unit ve:;:‘n"consists of one board, and a

second board is added when more than one disk unil=is{d&used. The two versions are

almost program compatible. >)

cAaN

N
i

In}erf ace Registers

The disk controller is operated by reading and writing four 32-bit registers which
are on the XBUS. These are normally at physical addresses 17 TT%14-17377777, which is
just below the Unibus. The address can be changed by changiig jumpers. Many bits in
these registers refer to the "selected unit", which is that disk unit whose number is
currently in bits <30:28> of the disk-address register. t

When read, the registers are:

0 STATUS '

<24:31> The block-counter of the selected unit. This tells you its current rotational
position. Reading of this register is not synchronized to its incrementation, so
you must read it twice and check that it came out the same both times.

<23> Internal Parity Error. This indicates that parity of the bits seen at the disk
and parity of the bits seen at the memory/failed to agree; something must have
been lost inside the controller someplace. The Read All and Write All ‘
commands cause spurious internal parity errors. The Read Compare command
Causes a spurious internal parity error if it sets Read Compare Difference (bit
22) and the the disk data and the memory data differ in parity. This error
does not stop the transfer. s

<22> Read Compare Difference. This indicates that data from memory and data
from the disk failed to agree. This bit is undefined unless the command is
read-compare. This error does not stop the transfer.

<2I> CCW Cycle. This bit being on in combination with Memory Parity Error
or Nonexistent Memory Error indicates that the error happened while fetching
a CCW, rather than while reading or writing data.

<20> Nonexistent Memory Error. Indicates that memory (or othes XBUS device)
failed to respond within 15 microseconds. This error stops the ‘transfer.

<19> Memory Parity Error. Indicates that even parity was read frofp memory (or
other XBUS device). This error stops the transfer. +

<18> Header Compare Error. Indicates that a block-header read from disk failed
to have the expected value. This may be because the disk head is not
positioned at the proper place, because the disk is not correctly formatted, or
because the header wasn't read correctly. This error stops the transfer.

<17> Header ECC Error. Indicates that the error-correcting code of a block
header failed to check. Unfortunately most header ECC errors show up as
header compare errors instead. Maybe this can be fixed? This error stops the
transfer. Header ECC Error also happens if an attempt is made to continue a

<16>
<l15>
<l4>

<13>

<12>

<11>

<i0>
<9>

<8>

<6>

<5>
<d4>

<>

52 The CADR Microprocessor

read or write operation past the end of the disk.

ECC Hard. Indicates that the error correcting code discovered an error, and
was unable to correct it. The data read from disk is wrong, try reading again.
This error stops the transfer.

ECC Soft. Indicates that the error correcting code discovered an error, and
was able to determine which data bits were in error. The program can correct
it, see the ECC Register for how. The error correcting code will correct any
single burst of up to 11 erroneous bits. This error stops the transfer.

Read Overrun. Indicates that data arrived from the disk faster than it could
be stored into memory. This error stops the transfer.

Write Overrun. Indicates that memory did not supply data fast enough for
the disk. This error stops the transfer.

Start Block Error. Indicates that a start-of-block (sector pulse) happened at
a time when it should not have. Either the disk is incorrectly formatted or it
is generating spurious sector pulses. This error stops the transfer.

Timeout Error. Indicates that a disk operation took longer than 2.5
seconds. This error stops the transfer. '

Selected Unit Seek Error. The selected unit is reporting failure of a seek
operation. This error stops the transfer. Reset the error by using the
Recalibrate command.

Selected Unit not On-line. The heads are not loaded, the disk is
not powered on, or there is no disk at the specified unit number. This error
stops the transfer.

Selected Unit not On-Cylinder. Generally indicates that a seek is
in progress on the selected unit. Not an error. If the disk goes off-cylinder
during a write operation, a fault will occur. If it goes off cylinder during a
read, presumably a header-compare error or an ECC error will occur.

Selected Unit Read-Only. The status of a switch on the disk. Note
that the read-only status can only change to reflect a change in the switch
when the drive is not selected. Storing into the Disk Address register
momentarily deselects the current unit so that it may update its read-only
status from the switch. Writing while the disk is read-only causes a fault,

Selected Unit Fault. Indicates either trouble with the disk or a
programming error, see the Trident manual. This error stops the transfer.
Reset by using the Fault Clear and/or Recalibrate commands. This error
lights the Device Check light on the drive.

No Unit Selected. This error stops the transfer. Happens if no
disk is plugged into the selected unit number, or the disk unit is powered off
or "degated”.

Multiple Units Selected. This error stops the transfer. This
indicates that more than one disk drive is selected, or the wrong drive is
selected.

Interrupt Request. 1 means the disk controller is asserting -
XBUS.INTR.

Selected Unit Attention. Reset using the At Ease command.
Attention indicates seek completion, recalibrate completion, initial loading of

53 The CADR Microprocessor

the heads, seek incomplete error, or an emergency head retract. "Implicit”
seeks do not cause attention.

<l> Any Attention. Some unit has an attention, you have to select
them one after another to find out which.
<0> Not Active. 0 means the controller is busy, 1 means it is ready to

accept a command.

1 MEMORY ADDRESS
<31:24> not used
<23:22> Disk type. 00 Trident 01 Marksman 10 unused 11 Trident (old control)
<21:0> the address of the last memory reference made by the disk control. This is

the address of a CCW if CCW Cycle is on in the status register, otherwise the
address of a data word.

2 DISK ADDRESS

<31> not used

<30:28> Unit number. In the 1-unit version, always zero.

<27:16> Cylinder number. A T-80 has 815, cylinders.

<15:8> Head number. A T-80 has § heads. As it turns out, only the bottom 6 bits
of the head number can work (this is a feature of the Trident.)

<7:0> Block number. A T-80 is usually formatted with 17. blocks per track.
"Block" is mostly synonymous with "sector".

When a transfer is terminated by an error, the disk address register contains the
address of the block being transferred when the error occurred. When a transfer

terminates normally, the disk address register has the address of the last block
transferred.

3 ERROR CORRECTION REGISTER
<31:16> Error pattern bits.
<1§:0> Error bit position+1.

When a soft ECC error occurs, this register tells where in the last block transferred
the error was. The disk address register has the disk address of the block containing
the error, and the command list pointer points to the CCW which points to the
memory page containing the error. The error pattern should be XOR'ed into the
contents of memory at the specified bit address; it may overlap across a word
boundary. Note that the bit position is off by 1; the first bit in the block is bit 1.

You should not write any register while a transfer is active, except for using the Reset
command to stop a hung transfer, and even then you should expect to lose.

When written, the registers are:

0 COMMAND
Writing the command register does NOT initiate a transfer, unlike most disk

54 The CADR Microprocessor

controllers. Use register 3 (START) to initiate a transfer, after setting up the other
registers. However, writing the command register does reset the various error flags.
Note that the command register cannot be read back.

<31:12> not used

<1l1>

<10>

<9>
<8>

<6>
<5>

<4>
<3>

<2:0>

Done Interrupt Enable. Enables not-active (bit O of the status register) to
cause an interrupt. The interrupt will keep happening until you clear this bit.
(This is really an idle interrupt rather than a done interrupt.)

Attention Interrupt Enable. Enables any-attention (bit 1 of the status
register) to cause an interrupt. (The interrupt will only happen if the
controller is not active. While the controller is active you couldn't do
anything about it anyway.) The interrupt will keep happening until you select
the drive and give an at-ease command, or clear this bit.

Recalibrate. In combination with command 5, causes the disk to return the
heads to cylinder 0.

Fault Clear. In combination with command §, resets most fault conditions
in the disk.

Data Strobe Late. For recovery of marginal data.

Data Strobe Early. For recovery of marginal data.

Servo Offset. For recovery of marginal data, offsets the heads slightly. Bit
4 controls which direction. Note that this is somewhat kludgey, if you try to
seek while the heads are offset you get a fault (use command 6 first to clear
the offset.) Transferring more than one block at a time while in servo offset
mode, or even retrying a transfer without first doing an offset clear, will
probably cause a fault. Of questionable worth anyway. Writing while the
heads are offset causes a fault.

Offset forward. 1 means offset forward, 0 means offset backward.

170 Direction. 1 means from-memory, 0 means to-memory. See below for
valid combinations.

Command code. The following combinations of bits are valid commands
(here expressed in octal). Note that bits 10 and 11 may always be turned on,
and bits 4 through 7 may be turned on in any reading command.

0000 Read.

0010 Read-compare. Reads from both disk and memory, and sets bit 22
of the status register if they don't agree.

0011 Write.

0002 Read All. Reads all bits of the disk starting at the specified
rotational position. Note that internal parity errors will occur
spuriously during this command, and that it will not automatically
advance heads and cylinders. See the description of disk
formatting below.

0013 Write All. Writes all bits of the disk starting at the specified
rotational position. This is intended for formatting the disk, see
below. The caveats under READ ALL apply to WRITE ALL also.
In addition, it doesn't really write quite all of the last page;
somewhere between zero and seventeen words will be lost.

85 The CADR Microprocessor

0004 Seek. Initiates a seek to the cylinder specified in the disk address
register. An attention will occur when the seek completes. Note

_ that this command is not logically necessary; the controller always
initiates a seek if necessary at the start of a data transfer command.
The read, read-compare, and write commands also will seek in the
middle of a transfer when necessary. The seek command is
provided so you can overlap seeks on multiple units.

0005 At ease. Resets attention on the selected unit.

1005 Recalibrate. Seek to cylinder 0, without assuming the current
position of the heads is correct. This is used to correct a seek

_ error, and as part of error recovery. Recalibrate resets some error

conditions in the drive, and causes an attention when complete.

. 0405 Fault clear. Resets most error conditions in the drive.

_ 1405 This probably does both a Recalibrate and a Fault Clear.

0006 Offset clear. Take the heads out of the offset state. This does not
wait for completion, but the next command will.

-~ xxx7 This is a reserved command, and will currently hang the controller,
causing a timeout error (bit 11 in the status register.)

0016 Reset. This stops the current transfer and resets the controller.
This command takes effect as soon as it is stored in the command
register; no store in START is required. After storing a Reset

B command you should store 0 in the command register to turn off

the reset condition. Use of Reset while a transfer is in progress
isn't guaranteed not to do strange things.

All commands except for the xxx5 group and Reset wait for completion of any
previous seek operation on the selected unit before starting. Thus even the

— Seek and Offset Clear commands can take finite time before the controller is
ready for the next command.

1 COMMAND LIST POINTER
This is the address of a vector of Channel Command Words (CCWs) which
- specify what memory pages, and how many, are to be transferred to/from

disk. Only bits <15:0> of the CLP can count, so if you try to carry across this
boundary your command list will wrap around.

The format of a CCW is:
<31:24> not used
<23:8> Main memory address of a page
<7:1> not used
<0> More flag. If this bit is 0, this is the last CCW in the list. If this bit
is 1, there is another CCW in the following location.

2 DISK ADDRESS

See the description of the disk address register under reading. Note that in the 1-unit
version, the unit number bits <30:28> are ignored and regarded as always zero.

56 The CADR Microprocessor

3 START

Writing anything at this address initiates the operation specified in the command,
disk address, and command list pointer registers.

Disk Structure

Each disk block contains one Lisp machine page worth of data, i.e. 256. words
or 1024. bytes. You can transfer up to 65536. consecutive disk blocks to non-consecutive
memory locations in a single operation, or you could if the machine supported that much
main memory. A T-80 has 815. cylinders, each with § heads (tracks), each with 16. or 17.

blocks depending on how you feel like formatting it. A T-300 is the same except it has
19. heads.

Formatting

The format is determined by the program that uses the Write All operation to
format the disk, within the constraints determined by the hardware. A track contains
(approximately) 20160. bytes (on a T-80 or a T-300). Jumpers in the disk are set to give

17. sector pulses per track, or one every 1164. bytes, with a little left over at the end of
the track.

Everything goes low-order bit first and low-order byte first. Note that bits in the disk
controller are the complement of bits seen by the drive. Thus all bits in the Trident
manual should be thought of as complemented.

The format of a block is:

(sector pulse here)

PREAMBLE - 53. bytes of ones.

VFO LOCK - 8. bytes of ones.

SYNC - a byte containing octal 177

HEADER - a 32-bit word as follows:

€31:30> next block address code:

0 following block on same track
1 block 0 on next track (next head)
2 block 0 on head 0 of next cylinder
3 end of disk

<29:28> not used, should be zero
€<27:16> cylinder number, used to verify that the
disk is positioned to the correct cylinder.

<15:8> head number, used to verify the head selection.

<7:0> block number, used to verify the rotational position.
HEADER ECC - a 32-bit checkword.
VFO RELOCK - 20. bytes of ones.
SYNC - a byte containing octal 177

87 The CADR Microprocessor

PAD - a byte containing octal 377, which is here to fix
a bug in the logic for read-compare. (Ugh)

DATA - 1024. bytes of whatever you want.

DATA ECC - a 32-bit checkword.

POSTAMBLE - 44. bytes of ones.

To format the disk, you should do it one track at a time. Lay out in memory
the bits to be written on the track. Truncate the length to a multiple of a page, but make
sure that the last 17. words don't matter (in general you will be writing 19. pages, or
19456. bytes, leaving about 771. bytes at the end of the track which may not get written,
depending on how full the fifo is when the operation terminates. Depending on the block
length chosen, you may not get a chance to fully write the last block, but as long as you ",
get into the data area it will be all right. Do a WRITE ALL command of this data, with
a disk address whose block-number field (bits <7:0>) is zero. Ignore any internal parity
error (bit 23 of the status register.) You can verify it by using the Read All command
(but the internal parity and read-compare features will not work), or you can use the
ordinary write and read commands. You must compute the ECC check-words manually.
The polynomial is x*31+x~29+x~20+x~10+x~8+1 [if I understand this logic correctly.]

Note that, when using Read All, there is some ambiguity as to precisely where
the data read starts. It is unlikely to line up the bytes on byte boundaries. The first .

" several microseconds worth of data will be missing or corrupted.

A

WA

Debugging

Connector J11 is provided for a flat cable to an LED display, with the following
useful signals on it. These are ground when inactive, 15 milliamps at +3 volts or so when
active.

1 Read Active. The controller is active and bit 0
of the command register is 0.
2 Write Active. The controller is active and bit 0

of the command register is 1.

Seek. The selected unit is not on-cylinder. .

4 Transfer Lossage. This is the IOR of Timeout, Read
Overrun, Write Overrun, Memory Parity Error, and
Nonexistent Memory Error.

w

5 Format Lossage. This is the IOR of Start Block Error,
Header Compare Error, Header ECC Error, and Reset.

6 ECC Lossage. This is the IOR of Hard ECC Error and
Soft ECC Error.

7 Disk Lossage. This is the IOR of Multiple Units Selected,

No Units Selected, Selected Unit Fault, Selected Unit not
On-Line, and Selected Unit Seek Error.

8 Spare. This probably does not light up. _

58 The CADR Microprocessor

<<Here insert a one-page table of instruction formats and so forth>>

59 The CADR Microprocessor

The CONSLP Assembler

CONSLP is a symbolic assembler written in Maclisp which reads in source code
for the CADR machine and produces a file loadable by the CC debugger. The source
code is written in the form of LISP S-expressions; symbols are LISP atomic symbols, and
instructions or data items are written as lists. Comments can thus be written using
Maclisp'’s semicolon convention. The input radix for numbers is 8 (octal), except that a
trailing decimal point forces radix 10 (decimal).

Localities

A program can specify data to be loaded into the instruction, dispatch, A, and M
memories. To specify which of the memories to assemble data for, the LOCALITY
pseudo-op is used:

(LOCALITY I-MEM) ;following data goes into instruction memory
{LOCALITY D-MEM) " ;ditto, dispatch memory

{LOCALITY A-MEM) sditto, A memory

(LOCALITY M-MEM) ;ditto, M memory

Location Tags and Symbols

When an atomic symbol is encountered in the instruction stream being
assembled, it is taken to be a location tag (label). The tag is defined, as usual, to be the
value of the next location in the current locality to be assembled into, but shifted to put
the tag value into its "normal” position. For A memory tags, the normal position is the
A-source field of an instruction; similarly for M memory tags. For I memory tags, the
normal position is the New PC field of a JUMP instruction; for D memory tags, the
Dispatch Offset field of a DISPATCH instruction. Thus, if FOO is a tag for location 7 of
dispatch memory, then the effective value of FOO is 70000 .

By convention, tags in A memory begin with the letters "A-", and in M memory
with "M-", but this is not enforced by CONSLP.

Symbols can also be defined by means of the ASSIGN pseudo-operation:

(ASSIGN <{symbol)> <{value))
For example:

{ASSIGN CDR-1S-NORMAL 0)
(ASSIGN CDR-IS-ILLEGAL 1)

(ASSIGN CDR-1S-NIL 2)
(ASSIGN COR-IS-NEXT 3)

The <value> may be an expression program, in general. When a symbol is referenced,

60 The CADR Microprocessor

the expression program is evaluated 10 produce the symbol's value (which may be

conditional on the context in which it appears). Expression programs are discussed in a
later section.

Instructions

In general, CONSLP assembles a list into a data item by evaluating all the
elements of the list and adding them up. There is a fairly rich language for specifying
complex expression programs and assigning symbolic names to them; for now, however,
we will merely use the symbols predefined by CONSLP, CONSLP also allows the fields of

an instruction to be written in almost any order, but we will describe only the
conventional order for writing them.

The general form of an I-MEM instruction is:

(<pop3i> (<destinations>) <operation> <condition)
CM-source> <byte-descripterd <A-source) {target-tag> <other fields))

The <popj> field is POPJ-AFTER-NEXT to specify that the POPJ bit be set.

The <destinations> field may be an A or M memory tag, or the name of a functional

destination, or both an M memory tag and a functional destination. '

. The <operation> specifies the instruction type, and possibly other fields (such as the jump

condition) as well.

The <condition> may also be a separate field, though it usually is encoded as part of the

operation.

The <byte-descriptor> describes the byte to be used in a BYTE or DISPATCH

instruction.

The <M-source> and <A-source> specify the sources; these may be tags in the appropriate

memories, or, for the <M-source>, the name of an M multiplexor source.

The <target-tag> is an I'MEM tag for JUMP instructions, or a D-MEM tag for

DISPATCH instructions.

The <other fields> can be such things as the Q control and Miscellaneous Functions.
Many of these fields can be omitted, and CONSLP will default them

appropriately. If the <operation> is omitted, then ALU is assumed, unless a <byte

descriptor> is present either implicitly or explicitly, in which case BYTE is assumed. If

only one source is present in an ALU instruction, then an opcode of SETA is supplied for

an A source, and SETM for an M source, thus causing a simple movement of data. If the

A source is omitted in a BYTE instruction, then location 2 in A memory is assumed

(which is supposed to contain zero). '
Here are some examples of instructions, with commentary. We assume the

convention described above for A and M memory tags.

((A-FOO) M-BAR) ;move from BAR in M-MEM to FOO in A-MEM

(CALL ZAP) ido a CALL transfer to instruction ZAP (N bit set)

61 The CADR Microprocessor

((A-FOO) SUB M-BAR A-BAZ)
isubtract A-BAZ from M-BAR, put result in A-FOO

(JUMP-EQUAL-XCT-NEXT M-BAR A-FOO LOSE)
iJump to LOSE if M-BAR equals A-FOO; N bit is clear,
i 80 instruction after the JUMP s executed
: whether or not the JUMP succeeds

(POPJ-AFTER-NEXT (M-FOO) MEMORY-DATA)
iput data from memory into M-FOO,
; and slso POPJ after next tnstruction

((M-SAVE MEMORY-DATA-START-WRITE)
ADD MEMORY-DATA A-ZERO ALU-CARRY-IN-ONE)
iadd one to the read memory data,
i transfer to write memory data and M-SAVE,
: and begin writing the data into main memory
: at the address already in the VMA '

Literals

CONSLP provides a facility for specifying literals in the A and M memories.
The constructs :

(A-CONSTANT (expression>) and (M-CONSTANT {expressiond)

may appear as an A source or M source specification, causing CONSLP to allocate a word
in the appropriate memory, assemble the literal expression there, and use the address of
that location as the source location. If the same constant in the same memory is
referenced many times, CONSLP will assemble only one copy of it. Two constants are
considered the same if their final binary values are identical, regardless of the source
expressions which reduced to those values. The zero constant is treated specially, and
made to refer to location 2 of the appropriate memory (hence the user should reserve

these locations as constant sources of zeros). Similarly the -1 constant is made to refer to
location 3 of the appropriate memory.

Byte Specifications

Rather than requiring the user to calculate the rotation count and length (minus
1) fields for BYTE and DISPATCH instructions, CONSLP provides a uniform method for
specifying a byte in terms of its size and position in the word; CONSLP then calculates
the fields appropriately.

The simplest way to describe a byte is with the BYTE-FIELD construct:

62 The CADR Microprocessor

(BYTE-FIELD <size in bits> <position from right>)

For example, (BYTE-FIELD 5 0) is the low five bits of a word, and (BYTE-FIELD 7 5) is

the seven bits above them. The two arguments to BYTE-FIELD must be constant
integers.

Another way to describe a byte is:

(LISP-BYTE <ppss>)

where the low two octal digits of <ppss> are the size and the next two are the position.
The argument <ppss> is evaluated as a LISP form (see below under "Expression
Programs").

When a byte specifier appears in an instruction, the op-code is defaulted to
BYTE, and the type of byte instruction defaulted to "load byte". If specified elsewhere
in the instruction, the op-code may be DISPATCH instead; the dispatch is based on the
specified byte. The op-code may also be JUMP, but only if the byte is one bit wide; this
means that the jump will test the specified bit of the M source.

When CONSLP assembles the final instruction, it constructs the rotation count
and length minus 1 fields on the basis of the byte specifier and the operation to be
performed. For JUMP, DISPATCH, and "load byte” type BYTE instructions, this
involves subtracting the byte position from 32 to obtain the correct rotation count.
(Recall that CADR rotates words to the left.) If Miscellaneous Function 3 (LOW PC BIT
specifies half word) is enabled, then the position (which should be less than 16) is
subtracted from 16 instead. For "deposit byte" and "selective deposit” type BYTE
instructions, the byte position itself is used as the rotation count. The length minus 1
field for BYTE and JUMP is computed by subtracting 1 from the byte length, unless the
byte length is zero, in which case zero is used. (Note that CADR cannot really handle
zero-length bytes, but CONSLP allows them to be defined on the theory that the "next
instruction modify" feature may be in use. Programs which use this feature must be
aware of the hackery which the assembler pulls, and allow for the actual values of the
fields at run time.) The DISPATCH instruction has a length field instead of a length
minus 1 field, and so no subtraction of 1 is performed for it. .

Here are some examples of the use of byte specifiers:

{((M-X) (BYTE-FIELD 7 &) M-Y)
sextracts a 7-bit byte, 4 bits from
; the right, from M-Y, and puts this
; byte right-justified in M-X. The
s A source is defaulted to 1, which
; should be a constant Zero so that the
; other bits in M-X will be zero.

(JUMP-1F-BIT-SET (BYTE-FIELD 1 3) M-ZAP QUUX)
ijump to QUUX if the "10" bit 13 set in M-ZAP

(DISPATCH (BYTE-FIELD 3 0) M-ZAP DTABLE)

\a The CADR Microprocessor

;use the low tﬁru bits of N-ZAP to index
; into the dispatch table DTABLE

It is possible to create a symbolic name for 3 byte field by using the ASSIGN
pseudo-operation:

(ASS1GN LOW-HEX-DIGIT (BYTE-FIELD 4 0))
Since this is a common operataion. another pseudo-op exists for the purpose:
(DEF-DATA-FIELD Csymbo)> (byte size) Cbyte position))
_ For exatﬁple:
(uzr-nvnu-nm LOV-HEX-DIGIT 4 0)

It is also possible to associate a name with a byte field in a particular register.
One way to do this is to sum the byte specifier and the name of the register:

(ASS{GR CONDITION-CODES (PLUS (BYTE-FIELD & 0) POP-11-PS))
(ASSIGN TRACE-TRAP-BIT (PLUS (BYTE-FIELD 1 &) POP-11-PS))
(ASSIGN PRIORITY (PLUS (BYTE-FIELD 3 8) POP-11-PS))

. :
This case t00 is common enough to warrant a special pseudo-operation for the purpose:

% .
(OEF-BIT-FIELD-IN-REG (symbol)> <{byte size} <byts positiend (register))

For example:

-

(DEF-BIT-FIELD-IN-REG CONDITION-CODES 4 0 POP-11-PS)
(OEF-BIT-FIELD-IN-REG TRACE-TRAP-BIT 1 & POP-11-P5)
(OEF-BI1T-FIELD-1N-REG PRIORITY 3 § POP-11-P5)

Note that the <register> had better be in the M-scratchpad. With this definition, it is
only necessary to mention, say, PRIORITY, in an instruction to cause an appropriate byte
reference to occur: -

((A-PRIORITY) PRIORITY) sextract the PRIORITY byte from POP-11-PS
: and place 1t right-justified in A-PRIORITY

By special dispensation, it also works 1o use such symbols in the destination field. The
appropriate DPB is assembled.

_ Two more pseudo-operations make it easy to define names for many consecutive
bits or fields in a register.

84 The CADR Microprdcessor

]

(DEF-NEXT-FIELD <symbol> Cbyte size> <register>) .sp This defines <symbol> to be a byte of
the speicified size, in a position to the left of any fields already defined by DEF-NEXT-
FIELD. If this is the first DEF-NEXT-FIELD for the specified register, then the field
position is zero (at the low end of the word). For example:

(DEF-NEXT-FIELD REL-OFFSET 8 IBM-1130-INSTRUCTION)
(DEF-NEXT-FIELD TAG-FIELD 2 IBM-1130-INSTRUCTION)
(DEF-NEXT-FIELD FORMAT-BIT 1 I8M-1130-INSTRUCTION)
(OEF-NEXT-FIELD OP-CODE 5 1BM-1130-INSTRUCTION)

would be entirely equivalent to:

(DEF-BIT-FIELD-IN-REG REL-OFFSET 8 0 1BM-1130-INSTRUCTION)
(OEF-BIT-FIELD-IN-REG TAG-FIELD 2 & IBM-1130-INSTRUCTION)
(OEF-BIT-FIELD-IN-REG FORMAT-BIT 1 10. 18M-1130- INSTRUCTION)
(OEF-BIT-FIELD-IN-REG OP-CODE 5 11. 18M-1130- INSTRUCTION)

The pseudo-operation:
(b!f-ltn-_lll’ Csymbel)> (ns"tir)}
is entirely equivalent to:

(DEF-NEXT-FIELD <symbol) 1 <register))

and so allocates a single bit. It may be intermixed freely with DEF-NEXT-FIELD. For
example:

(DEF-NEXT-FIELO CONDITION-CODES 4 POP-11-PS)
(DEF-NEXT-BIT TRACE-TRAP-BIT POP-11-PS)
(DEF-NEXT-FIELD PRIORITY 3 POP-11-PS)

The construct:

(RESET-BIT-POINTER <register))

may be used to reset the pointer into <register> used by DEF-NEXT-FIELD and DEF-

NEXT-BIT. This is useful if the data in <register> can have several different formats.
For example:

(DEF-NEXT-BIT € PDP-11-PS)

(DEF-NEXT-BIT V PDP-11-PS)

(DEF-NEXT-BIT Z PDP-11-PS)

(DEF-NEXT-BIT N POP-11-PS)
(RESET-BIT-POINTER PDP-11-PS)

(DEF -NEXT-FIELD CONDITION-CODES 4 POP-11-PS)

85 The CADR Microprocessor

(DEF-NEXT-BIT TRACE-TRAP-BIT POP-11-PS)
(OEF-NEXT-FIELD PRIORITY 3 PDP-11-PS)

(DEF-NEXT-FIELD DST-REG 3 PDOP-11-INSTRUCTION)
(DEF-NEXT-FIELD DST-MODE 3 POP-11-INSTRUCTION)
(DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD OP-CODE 4 PDP-11-INSTRUCTION)
(RESET-BIT-POINTER PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD BRANCH-OFFSET 8 POP-11-INSTRUCTION)
(DEF-NEXT-FIELD BRANCH-CONDITION 3 PDP-11-INSTRUCTION)
(RESET-BLIT-POINTER PDP-11-INSTRUCTION)

Dispatch Tables

When assembling into the dispatch memory (i.e. (LOCALITY D-MEM)) it is
necessary to use two special pseudo-operations, START-DISPATCH and END-
DISPATCH, to allocate blocks of dispatch memory. These pseudo-operations specify the
length of the block required, and CONSLP undertakes to pack the various odd-sized
blocks into the dispatch memory in an appropriate manner.

The typical form for a dispatch block is:

(START-DISPATCH <1og2 of size> {constant data))
<dispatch table tagp>

{first word of table>

{last word of table>
(END-DISPATCH)

The <log2 of size> is the number of bits that will be dispatched on, that is, the logarithm

base 2 of the size of the dispatch block. The <constant data> will be added into each of

the words of the dispatch table; this is useful for the P, R, and N bits (which in CONSLP

are called P-BIT, R-BIT, and INHIBIT-XCT-NEXT-BIT). The END-DISPATCH is

logically not necessary, but is used for error checking. Exactly the correct number of
words must be assembled between the START-DISPATCH and END-DISPATCH, or

*~ CONSLP will give an error message. '

As an example of a dispatch table, consider this code:

(LOCALITY M-MEM)
" PDP-11-INSTRUCTION (0) sHOLDS SIMULATED PDP-11 INSTRUCTION
(DEF-NEXT-FIELD DST-REG 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD DST-MODE 3 PDP-11-INSTRUCTION)
{DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD OP-CODE # PDP-11-INSTRUCTION)

(LOCALITY]-MEM)

The CADR Microprocessor

(DISPATCH-CALL-XCT-NEXT DST-MODE D-DST-MODE)

(LOCALITY D-MEM)

(START-DISPATCH 3 P-BIT)

D-DST-MODE
(OST-REGISTER)
(DST-REG-INDIRECT)
(DST-AUTO- INCREMENT)
(DST-AUTO- INC- INDIRECT)
(DST-AUTO-DECREMENT)
(DST-AUTO-DEC- INDIRECT)
(0ST- INDEXED)

(DST- INDEXED- INDIRECT)

(END-DISPATCH)

RO
#R0
s(RO)+
s0(RO M+
i=(R0)
s0-(RO)
iN(RD)
sON(RO)

Note that the use in I'MEM of the op-code DISPATCH-CALL-XCT-NEXT is purely for
cosmetic purposes, to indicate that the P bit but not the N bit is a constant in all of the
dispatch table entries; it is otherwise identical to the DISPATCH op-code.

Standard Operation Codes

CONSLP supplies a large number of initial symbols for various operations,
particularly for the various conditional jumps. While it is possible to define different
ones, use of these standard ones is naturally encouraged. (These symbols are defined in

the file LISPM; CONSYM >.)

ALU Operations

The standard ALU operations supplied by CONSLP are:

Boolean
SETCM set to complement of M .
ANDCB AND together complements of both M and A
ANDCM AND complement of M with A
SETZ . set to zeros
ORCB OR together complements of both M and A
SETCA set to complement of A '
XOR XOR (exclusive OR) M and A
ANDCA AND M with complement of A

ORCM OR complement of M with A

-

67 The CADR Microprocessor

EQV EQV M and A (complement of XOR)
SETA set to A
AND AND together M and A
SETO set to ones
ORCA . OR M with complement of A
IOR OR M and A (inclusive OR)
SETM set to M
Arithmetic
ADD M plus A (two's complement addition)
SUB M minus A (two's complement subtraction)
M+M M plus M (two's complement addition)
M+M+1 M plus M plus 1
M+A+] M plus A plus 1
M-A-1 M minus A minus 1
M+l Mplus 1

" Conditional Arithmetic
MULTIPLY-STEP
DIVIDE-FIRST-STEP
DIVIDE-STEP
DIVIDE-LAST-STEP
DIVIDE-REMAINDER-CORRECTION-STEP

The conditional ALU operations for multiplication and division are explained in detail in
a later section,

The output bus selector field defaults to 1 (output bus gets ALU output). The
other two choices must be specified explicitly:

OUTPUT-SELECTOR-RIGHTSHIFT-1
OUTPUT-SELECTOR-LEFTSHIFT-1

The Q control field of an ALU instruction may be specified by using one of
these symbols:

SHIFT-Q-LEFT shift Q left (shifts inverse of ALUC31> into Q<0>)

SHIFT-Q-RIGHT shift Q right (shifts ALUCO) into Q¢31))

LOAD-Q load Q from output bus ;
If none of these is present, the default is to do nothing to Q. (Instead of writing LOAD-
Q. one may write Q-R in the destination portion of the instruction. This does not mean
that Q is a functional destination; it merely forces the operation to be ALU, and forces
the Q control field to be LOAD-Q.)

The carry field may be specified by ALU-CARRY-IN-ZERO or ALU-CARRY-
IN-ONE. Note that the SUB, M+M+1, M+A+1, and M+1 operations have ALU-CARRY-
IN-ONE as part of their definitions, so it is not necessary to specify it explicitly.

68 The CADR Microprocessor

_ BYTE operations

If a byte specifier is present in an instruction and the op-code is not explicitly
- forced to be JUMP or DISPATCH, then the op-code is BYTE by default, performing a
"load byte"” type of operation.

~ To get a "deposit byte" type operation, the symbol DPB is used; similarly, to get
a "selective deposit", SELECTIVE-DEPOSIT is used. For example:

((A-FOO) DPB M-BAR (BYTE-FIELD 3 6) A-FOO)
38 trus POP-10 style DPB; the low octal

~ ' . ; digit of M-BAR replaces the third lowest
— ; octa) digit of A-FOO.

((A-ZAP) DPB M-BAR (BYTE-FIELD 3 6) A-FOO)
ismilar, but the result 13 placed in
P! i A-IAP. A-FOO 13 not altered.

((A-ZAP) SELECTIVE-DEPOSIT M-FOO (BYTE-FIELD 16. 8) (A-CONSTANT -1))
iA-2AP gets & copy of M-FOO with the high eight

; : bits and the low eight bits replaced with all ones

[) : (alternatively, i1t gets a copy of the -1

: with the middle 16. bits replaced with

| ' ; the corresponding bits from M-FOO)

DISPATCH Operations

r Four op-codes are defined in CONSLP for dispatching:
L~ DISPATCH
DISPATCH-CALL
. : DISPATCH-XCT-NEXT
p— DISPATCH-CALL-XCT-NEXT

These are provided purely for cosmetic purposes, since the actual dispatch action is
controlled by the dispatch table. CONSLP makes no attempt to check that the “correct" .

B op-code is used with a given dispatch table. By convention, the XCT-NEXT versions are

- used iff the instruction following the dispatch instruction will be executed (N bit not set),
| [and the CALL versions are used if the P bit is set.

To specify the value of the 10-bit "immediate argument" which is loaded into
_ the DISPATCH CONSTANT register, one may use

(I-ARG <expression)) ;inmadiate argument

(1] The CADR Microprocessor

in the dispatch instruction.

There is a special pseudo-op to facilitate use of the DISPATCH CONSTANT to
pass a small, constant number as,an argument to a subroutine. The form

((ARG-CALL FOO) (1-ARG BAR)) .

generates a DISPATCH instruction to a one-word table containing a CALL-type transfer
to FOO, and puts BAR in the dispatch constant field of the dispatch instruction. FOO
may then use the READ-I-ARG functional source to pick up and act on the argument.

~ Miscellaneous Function 2 (write into the dispatch memory) is specified by the
symboi WRITE-DISPATCH-RAM.

JUMP Op'e,fations

CONSLP defines a large number of names for the various JUMP operations.
These are all built out of a logical progression of pieces:

{type> <condition> <xct next>
The <type> may be either JUMP, CALL, or POPJ, meaning that no bits, the P bit, or the .\
R bit is set. The <condition> may be one of the following:

IF-BIT-SET
1F-BIT-CLEAR
EQUAL

NOT-EQUAL
LESS-THAN
GREATER-THAN
GREATER-OR-EQUAL
LESS-OR-EQUAL ; '
IF-PAGE-FAULT ¥£. :
IF-NO-PAGE-FAULT

1F-PAGE-FAULT-OR- INTERRUPT

IF-NO-PAGE-FAULT-OR- INTERRUPT.

IF - PAGE-FAULT-OR- INTERRUPT-OR-SEQUENCE-BREAK

IF-NO-PAGE-FAULT-OR- INTERRUPT-OR-SEQUENCE-BREAK

If omitted, the <condition> is assumed to be "always". The <xct next>, if present, is !
XCT-NEXT; its absence denotes the presence of the N bit, which inhibits the instruction
after the jump if the jump is successful. The three parts are connected by "-".

Examples of these operations:

CALL-LESS-THAN o

JUMP-LESS-THAN-XCT-NEXT
CALL
POPJ-IF-BIT-SET

CALL-IF-PAGE-FAULT-OR-INTERRUPT

CALL-IF-BIT-CLEAR-XCT-NEXT
JUMP-XCT-NEXT
POPJ-XCT-NEXT

7 The CADR Microprocessor

The POPJ-XCT-NEXT operation is not to be confused with POPJ-AFTER-NEXT, which
may be used in any instruction to set the POPJ bit.

Jump instructions which perform an arithmetic comparison should have both an

A and an M source; the sources are compared. Jump instructions which test a bit should

have an M source and a byte specifier for a 1-bit byte to test.

Functional Sources

]

14

The following names are supplied by CONSLP for the various functional sources:

READ-I-ARG
MICRO-STACK-PNTR-AND-DATA
MICRO-STACK-POINTER
MICRO-STACK-DATA
MICRO-STACK-PNTR-AND-DATA-POP
MICRO-STACK-POINTER-POP
MICRO-STACK-DATA-POP
PDL-BUFFER-POINTER
PDL-BUFFER=-INDEX
C-PDL-BUFFER-INDEX
C-PDL-BUFFER-POINTER
C-PDL-BUFFER-POINTER-POP
OPC-REGISTER

Q-R

VMA

MEMORY-MAP-DATA
MEMORY-DATA
LOCATION-COUNTER

The dispatch constant

SPCPTR and SPC contents

Byte specifier for bits <28-24>
Byte specifier for bits <18-0>
Like 1, but pops SPC stack

Like 1, but pops SPC stack

Like 1, but pops SPC stack
PDL-pointer register

PDL-index register

PDL-buffer addressed by index
PDL-buffer addressed by pointer
PDL-buffer addressed by pointer, pop
The OPCs

Q register

VMA register

MAP[MD]

MD

LC

10
11
12
13
14
15
16
17
20
2l
22
23
30
31

33

n The CADR Microprocessor

Functional Destinations

The following names are provided by CONSLP for functional destinations. Note
that some of them are the same names used for sources; CONSLP distinguishes usage by
context. '

LOCATION-COUNTER LC

INTERRUPT-CONTROL Interrupt Control Register
C-PDL-BUFFER-POINTER Pdl location addressed by PDL POINTER
C-PDL-BUFFER-POINTER-PUSH Push data onto pdl, increment PDL POINTER
C-PDL-BUFFER-INDEX Pdl location addressed by PDL INDEX
PDL-BUFFER-INDEX PDL INDEX register
PDL-BUFFER-POINTER PDL POINTER register
MICRO-STACK-DATA-PUSH Push data onto SPC stack

OA-REG-LOW Next instruction modify, bits <25-0>
OA-REG-HI Next instruction modify, bits <47-26>
VMA VMA register

VMA-START-READ VMA, initiate read cycle
VMA-START-WRITE VMA, initiate write cycle
VMA-WRITE-MAP VMA, MAP[MD] « VMA

MEMORY-DATA ~ MD register

MEMORY -DATA-START-READ MD, initiate read cycle
MEMORY-DATA-START-WRITE MD, initiate write cycle

MEMORY -DATA-WRITE-MAP MD, MAP[MD] « VMA

The symbol Q-R may also be used as a destination; it causes an ALU instruction
to have its Q control field to be set to "load Q from ALU output™; this is equivalent to

- specifying LOAD-Q in the instruction. Do not use the output bus shifter in connection

with Q-R as a destination!

Operations Common to All Instructions

- The symbol for the POPJ bit is POPJ-AFTER-NEXT.
Miscellaneous Function 3 is denoted by LOW-PC-BIT-SELECTS-HALF-WD.
(This feature is described in greater detail in an earlier and a later sect_ion.)

Expression Programs in CONSLP

Wherever an expression may be used in CONSLP, the following arcane forms
may be used. In particular, the value of a symbol is normally an expression instead of a
simple number. Whenever an expression (or a symbol with an expression as its definition)

is encountered, it is evaluated according to the following rules:

<number> Evaluates to itself,

12 The CADR Microprocessor

(PLUS <expl> <exp2>) Adds together the two expressions, and combines their
' properties (such as byte-specifier-ness).

(DESTINATION-P <exp>) A conditional: if encountered while assembling a

destination, returns the value of <exp>, and otherwise
NIL.

(SOURCE-P <exp>) A conditional: if encountered while assembling a source

(M or A), returns the value of <exp>, and otherwise
NIL.

(DISPATCH-INSTRUCTION-P <exp>) A conditional: if encountered while assembling a

DISPATCH instruction, returns the value of <exp>,
and otherwise NIL.

(JUMP-INSTRUCTION-P <exp>) A conditional: if encountered while assembling a
JUMP instruction, returns the value of <exp>, and
otherwise NIL.

(ALU-INSTRUCTION-P <exp>) A conditional: if encountered while assembling an

ALU instruction, returns the value of <exp>, and
otherwise NIL.

(BYTE-INSTRUCTION-P <exp>) A conditional: if encountered while assembling a
BYTE instruction, returns the value of <exp>, and
otherwise NIL.

(NOT <conditional>) Negation. <conditional> must be one of the above
conditions! forms.

(OR <cond1> ... <condn>) Like a LISP OR, returns the first non-NIL conditional.

(BYTE-FIELD <size> <pos>) As described earlier, defines a byte with the given size
and position from the right.

(LISP-BYTE <ppss>) As described earlier; if ppss is written in octal, then this is
like (BYTE-FIELD ss pp). If <ppss> is not a
number, then it is a LISP expression (not a CONSLP
expression!), and is evaluated in LISP.

(BYTE-MASK <byte specifier>) Value is a word which is zero everywhere except for
being all ones in the specified byte. This is a kind of
conditional, in that it returns NIL if the byte
specifier doesn't really specify a byte.

£ The CADR Microprocessor

(BYTE-VALUE <byte specifier> <value>) Value is a word which is zero everywhere,
except that it contains <value> in the specified byte.
. This is a kind of conditional, in that it returns NIL if
the byte specifier doesn't really specify a byte.

(OA-HIGH-CONTEXT <word>) Assembles <word> as an instruction, and returns
the high half (bits <47-26>), as if for use by the OA
register feature (next instruction modify, functional
destination 17).

(OA-LOW-CONTEXT <word>) Assembles <word> as an instruction, and returns
the low half (bits <25-0>), as if for use by the OA

register feature (next instruction modify, functional
destination 16).

(FORCE-DISPATCH <exp>) Returns value of <exp>, but also forces the

instruction to be a DISPATCH instruction. A
conflict causes an error.

(FORCE-JUMP <exp>) Returns value of <exp>, but also forces the instruction
. to be a JUMP instruction.

(FORCE-ALU <exp>) Returns value of <exp>, but also forces the instruction
to be an ALU instruction. '

(FORCE-BYTE <exp>) : Returns value of <exp>, but also forces the instruction
to be a BYTE instruction.

(FORCE-DISPATCH-OR-BYTE <exp>) Returns value of <exp>, but also forces the
instruction to be a DISPATCH or BYTE instruction.

(FORCE-ALU-OR-BYTE <exp>) Returns value of <exp>, but also forces the
instruction to be an ALU or BYTE instruction.

(I-MEM-LOC <tag>) Returns the address represented by <tag> in locality I-
MEM as a right-justified value.

(D-MEM-LOC <tag>) Returns the addréss represented by <tag> in locality D-
MEM as a right-justified value.

(A-MEM-LOC <tag>) Returns the address represented by <tag> in locality A-
MEM as a right-justified value,

(M-MEM-LOC <tag>) Returns the address represented by <tag> in locality M-
MEM as a right-justified value.

b — " The CADR Microprocessor

(EVAL <lisp exp>) Returns the result of evaluating in LISP the S-expression
<exp>.
B (FIELD <name> <value>) Makes a note that the field <name> has been specified,

_ then multiplies together the values of <name> and
_ <value>; if <name> has a LISP CONS-LAP-
ADDITIVE-CONSTANT property, this is then added
in. (This obscurity is the primitive from which all
field specifications are made.)

(ERROR) Error if this is assembled. Useful in conditionals.

- As examples of how conditionals might be used in expressions, consider these
_ definitions (which are similar (but not identical) to the ones actually used in CONSLP):

(ASSIGN Q-R (OR (SOURCE-P (FIELD M-SOURCE 7))
- (FORCE-ALY 3)))

(ASSIGN MEMORY-DATA
(OR (SOURCE-P (FIELD M-SOURCE 12))
(FIELD FUNCTIONAL-DESTINATION 30)))

Jr (ASSIGN MEMORY-DATA-START-WRITE
(OR (SOURCE-P (ERROR))
— (FIELD FUNCTIONAL-DESTINATION 32)))
- Miscellaneous Pseudo-Operations
Several identical words may be assembled consecutively by saying:
e
(REPEAT <{count) <{word>)
P-
The location counter within the current locality may be set by
p— (LOC <value)) isets 1t to <value}
{MODULO <m>) ;advances it to the next multiple of <n)
~
r If the MODULO operation is used in A-memory, wastage is avoided by filling in the
skipped-over locations with constants.
-

7% The CADR Microprocessor

\

CADR Features and Programming Examples
(t
In this section the various features of the CADR machine are examined and
discussed in detail. An attempt is made to give some feeling for how each feature fits
into the overall structure of the machine, and the purposes for which the feature is
intended. Short programming examples using each feature are presented.

vy

Timing - The N Bit and (nﬁ:%opa Bit !
: ;

Because CADR fetches the next instruction at the same time it is executing the
current one, by the time the effect of a JUMP or DISPATCH is known the instruction
following the JUMP or DISPATCH has already been fetched. Unless suppressed by the
N bit, this instruction is'8xecuted before the instruction branched to. The effect of this
on programming is that e should "'cod, the branch one instruction sooner”. The
mnemonics CONSLP provides for the varibg; branching operations normally set the N bit,
thus doing the straightforward thing'at the cost of wasted cycles; one must append "-
XCT-NEXT" to the mnemonjc to clear the N.bit and so bum the code.

For example, consider, these fwo pieces of code:

f \ 1“ »

((A-FOO) XOR M-BAR A-FOO) :XOR M-BAR into A-FOO
(JUMP-IF-BIT-SET MUMBLE MUMBLIFY) sbranch on MUMBLE bit
(Jump- IF-BIT-SET-XCT-NEXT MUMBLE H‘IH!LIFY) sbranch on MUMBLE bit
((A-FOO) XOR M-BAR A FOO) ;XOR M-BAR into A-FOO

L]

These both perform an XOR and condifionally jump to MUMBLIFY, but the first one
wastes a cycle if the JUMP is successfuli’ Notice the convention of "exdenting” an
instruction which is under the i ﬁuqnceﬁf an XCT-NEXT to make it more visible.

If a CALL transfer type is executed, the return address saved on the SPC stack

depends on the N bit: \ \
1§
(CALL THE-SUBROUTINE) ¢y " icall, N bit set
((A-FOO) XOR M-BAR A-FOO) . sreturn here after call
(CALL-XCT-NEXT THE-SUBROUTINE) scall, N bit clear
{(A-ARGUMENT) ADD M-BAZ A-F0O) ido this before entering the subroutine
((A-FOO) XOR M-BAR A-FOO) ;return hcrif;:fttr call

If the N bit is set, PC+1 is pushed on the SPC stack; otherwi'se

PC+2 is pushed.

The POPJ bit may be set in any instruction. "
It causes a RETURN transfer, but only after the next instruction has

76 The CADR Microprocessor

also been executed:

ADD-THREE -WORDS . :subroutine to add together A-1, A-2, and A-3
{{M-RESULT) A-1) ' .
(POPJ-AFTER-NEXT (M-RESULT) ADD M-RESULT A-2)

((M-RESULT) ADD M-RESULT A-3)

Again, the idea is to specify the desired control "one instruction early”.
Consider the following program:

START (JUMP-XCT-NEXT FOO)
(JUMP -XCT-NEXT BAR)

FOO { JUMP-XCT-NEXT FOO)
BAR {JUMP-XCT-NEXT BAR)

When started at START, it will go into an infinite loop alternately executing FOO and

- BAR. Effectively it is in two "jump point" loops at the same time!

Byte Manipulation

By using M location 2 (by convention a source of zeros) with a BYTE
instruction, one can clear any bit or field of bits in any A memory location:

((A-FOO) DPB M-ZERO A-FOO (BYTE-FIELD 1 31.)) ;clear sign bit

It is often convenient to reserve another M memory location to contain -1 (all ones), in
order to be able to set bits easily:

((A-FOO) DPB M-ONES A-FOO (BYTE-FIELO 1 31.)) ;set sign bit

In a similar manner one can write a routine to extend a signed 24-bit number to 32 bits:

 SIGN-EXTEND ;extend 24-bit number tn M-NUM

(POPJ-AFTER-NEXT POPJ-1F-BIT-CLEAR M-NUM (BYTE-FIELD 1 23.))
((M-NUM) SELECTIVE-DEPOSIT M-NUM (BYTE-FIELD 24. 0) (A-CONSTANT -1))

Another way to do this, which doesn’t require the use of POPJ, is to use OA modification
to select whether the M source is M-ZERO or M-ONES:

((OA-REG-HI) (BYTE-FIELD 1 23.) M-NUM) ;low M-source bit gets sign
((M-NUM) SELECTIVE-DEPOSIT M-ZERO (BYTE-FIELD 8 24.) A-NUM)

” The CADR Microprocessor

This requires that M-ZERO and M-ONES be an even/odd pair.

Normally bytes can only be loaded from an M source. However, it is possible to

load a byte from A-memory, provided that it is at one end of the word, by the following
trick:

(DEF -DATA-FJELD X-FIELD 6 0)
(DEF-DATA-FIELD ALL-BUT-X-FIELD 32 6)

((DEST) SELECTIVE-DEPOSIT M-ZERO ALL-BUT-X-FIELD A-FOO)

The Instruction Stream

<<Some new stuff should be written for this>>

The SPC Stack

The SPC stack is 32 locations long, each location containing 19 bits (plus parity).
It is indexed by SPCPTR, a 5-bit up/down counter. It is used primarily as a microcode
subroutine return stack, but besides the 14 bits needed to save a microcode PC there are 5§
bits for software use, one of which is the bit used for the macroinstruction pair fetch
feature mentioned above.

SPC Stack Location 18 15 12 9 6 3 0
| |] | | 1
I | |
I 5 | 14 |
1 | |
| |
Software bits--=-ccrcccccccnca. - |
' |
Saved return address---=--cccccccccccccccccccan eea!

There are two ways in which to write into the SPC stack memory; both of them
also increment SPCPTR, thus causing a push operation. A JUMP or DISPATCH
performing a CALL transfer type (P bit set, R bit clear) causes a return address to be
pushed on the stack as described earlier. The five software bits are set to zero. Writing
into functional destination 15 (MICRO-STACK-DATA-PUSH) pushes the low 19 bits of
the output bus data onto the SPC stack.

The SPC stack is read by a JUMP or DISPATCH performing a RETURN
transfer type (R bit set, P bit clear); the low 14 bits popped off the stack are put in the
PC, and the software bits are ignored, except for bit 14 which causes NEXT-INSTR. It

7 The CADR Microprocessor

can also be read as M functional sources 1 and 14. The first (MICRO-STACK-PNTR-
AND-DATA) merely reads the data (and SPCPTR) on the top of the stack, while the
second (MICRO-STACK-PNTR-AND-DATA-POP) pops the stack after reading the data.

There is no way to explicitly set the contents of SPCPTR. However, a good
trick is to use the following loop:

FOO ((M-TEMP) MICRO-STACK-POINTER-POP) iget just SPCPTR
(JUMP- IF -EQUAL M-TEMP A-ZERO FOO)

A better trick is to use the following loop, which not only is shorter, but is recursive
rather than iterative, and has the important advantage of being more obscure:

FOO (CALL-NOT-EQUAL MICRO-STACK-PNTR-AND-DATA
(A-CONSTANT (PLUS 1 (1-MEM-LOC FOO))) FO0O)

This is a good thing to do on initialization so that the stack will begin in 2 known place.
thus aiding debugging via the diagnostic interface.

There is no provision for detection of SPC stack overflow or underflow. It is the
responsibility of the programmer 10 avoid nesting subroutines to a depth greater than 32.

The PDL BUFFER Memory

The PDL BUFFER is intended to be used as a special-purpose cache in the Lisp
machine to contain the top portion of the Lisp pushdown stack. It has 1024 locations of
32 bits, and can be indexed by either the PDL POINTER or the PDL INDEX. PDL
POINTER is a 10-bit up/down counter, while PDL INDEX is simply a 10-bit register.

The PDL BUFFER is manipulated through various functional sources and
functional destinations. The PDL POINTER and PDL INDEX registers may be read and
written. (On CONS, these could only be read together, but on CADR they are read
separately to facilitate doing arithmetic with them without the need to extract a byte
first.) The contents of the PDL BUFFER location addressed by the contents of PDL
INDEX may be read and written. The contents of the location addressed by the contents
of PDL POINTER may also be read and written, and in this case the PUSH and POP
operations may optionally be done by incrementing or decrementing the PDL POINTER.
The pointer decrements after reading and increments before writing, so it always points to
the topmost valid location,

It doesn’t work to specify both C-PDL-BUFFER-POINTER-PUSH and C-PDL-
BUFFER-POINTER-POP in the same instruction. On the other hand, the same effect can
always be achieved simply by using C-PDL-BUFFER-POINTER for both source and
destination instead.

There is no provision for automatic overflow or underflow detection on pushes
and pops of the PDL BUFFER. In the Lisp machine, the PDL POINTER is checked on
entry to every function, and at a few other necessary places. If there is insufficient room
left within the PDL BUFFER for a maximum size frame, some of the PDL BUFFER is
stored into main memory to make room. If there is also insufficient space left within the

— ” The CADR Microprocessor

virtual memory allocated to the PDL, a PDL-OVERFLOW error is signalled. Similarly,
L the function exit code decides whether to pull some stack back in from main memory.

108
Chaos Net *
Keyboard
Mouse
UNIBUS compatible N
Ao
PROCESSOR
Amem 1K x 328 |
Hmem 32 x 328 BUS |
POL buffer 1K x 328 ABAPTOR
Dispatch 2K x 178
CONTROL MEM .
) V32 bit
p to 18K x 488 | xous MENORY
1 128K to 4Mword
* 32 bit
ECC
DISK CONTROL
I S Y 80 Mbyte
! torage Module compatible| . -
p to 8 drives (2.5 Gbytey) .
. Error check and correct .
—
Other devices TV CONTROL
SO O Oen00 788 x 1024 bit map
Image coavolver € Programmable raster White phosphor
A box up to B84 x 1188
Image imput 5122812 4 bit pixelsd
PROCESSOR DATA PATHS 28-NOV-1978 01:53 Al:LMDOC;FIG1
1 [P S o S
o b i e e i e i i

-

ALU

BYTE

DISPATCH

Jump

Y6

By

Lf

1y JZ 11 g

- =

PEOF™

ALY

Jume
DISP
BYTE

Lo N -

A SOURCE

M SOURCE

DESTINATION

»meceo
e - E

ALU
FCN

- ™ @m!»O

- = =B »W

- > -

RO -

opP
ALU
Jump
DISP
BYTE

~“vOow

A SOURCE

N SOURCE

BYTE
SIZE

DESTINATION R

BYTE
POSITION

Jﬁ.\..l /)r\

o =B

- - A

[-)

or
ALU
Jump
DISP
BYTE

“wow

A SOURCE

M SOURCE

.

DISPATCH MAP | BYTE
1 CTL | SIZE

BYTE
POSITION

LR NN B B]

- -

MEOF -

~wow

A SOURCE

M SOURCE

NEW
PC

e E

- maE X e

TEST
L)

22-MAY-1979 02:53

Al:LMDOC;FIG2

\ = e L

—y

(

\

5% “ 3
T0
BUS ADAPTOR
A hem —— o wver
G o : A IRTUAL WA
= N\
H..:. > osus
M MEMN
32 » 328
OTHER —
SOURCES
-1
.-. " DISPATCH
F S MEMORY R
X ceesenen [
P 2 x 178 “ o
A] NEW PC 1 ’ CONTROL MEMORY N I
¢c 11 ---o-mm-o-- T
NICRO R 16K x 488 R
STACK 0 “ £
R
+1
.m_:_u_-m DATA PATH DIAGRAM 22-MAY-1979 02:52 Al:LMDOC;FIG3
- | ,. | | O _ ﬂ i | _ _ | i
(2" \ = \ ((\ \

XCVR XCVR XCVR
LISP LISP FILE
MACHINE MACHINE COMPUTER

i

i

300 Mbyte
B DISK

uec
........ XCVR
KL-10
Al
ARPA NET Y oo KCVR
KA-10
SPEECH
....... XCVR
DEC 2040
1 sasua
TERMINAL | ewrsics XCVR
CONCENTRATOR . | ~7-°7:°
— POP-11

MIT LOCAL NETWORK - CHAOS

22-MAY-1979 02:52

Al:LMDOC;FIG5

T . 3 L)

gt al..ﬂ...\ e

’-__!

A MEMORY

1024 » 32
(PLUS PARITY)

CONS

MAIN DATA PATHS

24-FEB-1981 22:24

Al:LMDOC;CHOD1

{

[

L

I 1.4»._ T

ﬁ _ {

\ 4

A Dﬂ.

A MEMORY
1024 x 32
(+PARITY) A PASS ALL OP
A :mu.p.ocru PATY] '
A
M AD Vr
ﬂ ﬂ.& M ! ouUTPUT
" : BUS
M MEMORY L I sus SELECT
drairn [|
AlLlU
oL wess | "
- N BUS A - OUTPUT BUS
m e P | :
POL BUFFER L "
e [B
src - _ sLect
L
| o ROTATION
s COUNT
SPC MEM H
32 x 19 — L jraene
(+PARITY) ¢
CONS A AND M BUSSES 17-0CT-1979 08:21 | ALLMDOC;CHODAM
f | | _) — (n a_ — ¢ —. — . _ (f

(

L A

P |

L

~

oL PC
PC] RING BUFFER L___1g poP-11

x4

w

“.ﬂ'¢=—%-<8~._
SELECT = (JUW A -R) v (DISP A -R) v WRITE

CLGCK
INSTRUCT 10N
AB-0 (PARITY A9 — MEMORY
-0 16K x 48
(PLUS PARITY)

MEXT INSTRUCTION MODIFY
(FUNCTIONAL DEST 16 OR 17)

DEBUG INSTRUCTION FROM POP-1

CONS _ MAIN CONTROL PATHS 24-FEB-1981 22:50 Al:LMDOC;CHODI

e T e e e N e g — e gy -

e >

Iastruction N+l

Instruction M‘:ﬂ.ﬂ\‘ Instruction M

|reson st stone w2 |revonw svome w1 freronwes stomew |

woy LT L LT

WRITE (W) --

A1l times shown are snominal and subject to tweaking.
Disgram 13 mot precisely te scale.

17-0CT-1979 08:20

Al:LMDOE;CHODTM

